Higgs mass and ZH cross-section from $Z(\mu^+\mu^-)$ H events

Ang LI (APC-Paris, Université de Paris, CNRS/IN2P3) On behalf of the FCC-ee ZH analysis team

Motivation and introduction

- Event selection
- Signal and background modelling
- Statistical analysis and Systematics
- Delphes and Full Simulation comparison

Motivation

> Goal: precise measurements of ZH cross section and Higgs mass

- Current best result LHC: $m_H = 125.38 \pm 0.14(\pm 0.12)$ GeV
- At FCC-ee, m_H and σ_{ZH} accuracy will reach a few MeV and 0.5%, respectively
 - \rightarrow Measure g_{HZZ} , Higgs width (Γ_H) and other Higgs couplings

> Signal: $e^+e^- \rightarrow ZH \rightarrow ll + X$

ZH is the dominant Higgs production process @ 240 GeV e^+e^- machine

- \blacktriangleright Model-independent study
- $L = 5 ab^{-1}$ $\gg M_{recoil}$ from the Z production without measuring the Higgs production final state $\stackrel{\circ}{\simeq}$ 100 $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $m_{\rm recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$ 80 $m_{\rm recoil}$

 \succ Sensitive to the precise knowledge of the centre-of-mass energy (\sqrt{s})

and Initial State Radiation (ISR)

- > WW, ZZ and dilepton backgrounds @ 240 GeV
- > So far, focus on the $Z \rightarrow \mu^+ \mu^-$ channel

Ang LI--APC-Paris 07/02/2021

 $\sqrt{s} = 240.0 \, \text{GeV}$

GeV

60

20

 m_{l+l}

FCC-ee Simulation (Delphes)

M_{recoil}

Z(v⊽)H

Z(e⁻e⁺)H

 $Z(\tau \tau^{+})H$

Z(qq)H Z(μ⁻μ⁺)Η

νττ

γγμμ eeZ

Z→ aā

 $Z \rightarrow \parallel$

77

160

180

M_{recoil} [GeV] 3

200

 $W^+(\overline{\nu}\mu^+)W^-(\overline{\nu}\mu^-)$

EXECUTE Signal, Background Monte-Carlo simulation, Event Selection

- **Monte-Carlo simulation:**
- $\sqrt{s} = 240 \text{ GeV}$
- Luminosity: $L = 5 ab^{-1}$
- Initial State Radiation (ISR) and Final State Radiation (FSR) on ٠
- Beam Energy Spread (BES) set to $0.165\% = \pm 198$ MeV (from CDR)
- IDEA detector; detector response modelled with Delphes

> Signals:

- $Z(\mu^+\mu^-)H$, (Whizard) 1.
- 2. $Z(\tau^+\tau^-)H$, (Whizard)
- $Z(q\bar{q})H$, (Whizard) 3.
- $v_{\rho}\overline{v_{\rho}}H$, (Whizard) 4.
- 5. e^+e^-H (Whizard)

Backgrounds:

- 1. ZZ(inclusive), (Pythia)
- 2. $W^+(\nu\mu^+)W^-(\bar{\nu}\mu^-)$, (Pythia)
- 3. $Z \rightarrow l^+ l^-$, (Pythia)
- 4. $Z \rightarrow q\bar{q}$, (Pythia)
- 5. eeZ, (Whizard)
- $\gamma \gamma \rightarrow \mu^+ \mu^- / \tau^+ \tau^-$ (Whizard) 6.

Event-Selection:

- At least one Z boson from a $\mu^+\mu^-$ pair 1.
- $m_{\mu^+\mu^-} \in [86, 96] \text{ GeV}$ 2.
- 3. $M_{\text{recoil}} \in [120, 140] \text{ GeV}$
- 4. $p_T^{\mu^+\mu^-} \in [20, 70] \text{ GeV}$
- $\left|\cos\theta_{missing}\right| < 0.98$ 5.

- \rightarrow focus on Z resonance space
- \rightarrow Signal exhibits sharp peak around ~ 125 GeV,
- \rightarrow Signal mainly within this region, Low $p_T^{\mu^+\mu^-}$ cuts back-to-back events $(Z/\gamma^* \rightarrow ll)$
- \rightarrow Polar angle of missing momentum, reduce $\gamma\gamma$ processes. ISR emitted approximately collinear with the incoming beams escapes detection in the beam pipe

Double-sided crystal-ball fit v.s. customized p.d.f.

Double sided Crystal-Ball function:

Gaussian Core $\int \left(\frac{\left(\frac{n_R}{|\alpha_R|}\right)^{n_R} \exp\left(\frac{-|\alpha_R|^2}{2}\right) \left(\frac{n_R}{|\alpha_R|} - |\alpha_R| + \frac{x-\mu}{\sigma}\right)^{-n_R}, \text{ for } \frac{x-\mu}{\sigma} \ge \alpha_R,$

 $f_S(x;\vec{\theta}) = \left\{ \exp(-\frac{1}{2} \left(\frac{x-\mu}{2}\right)^2) \right\}$

Power law tail on right and left

 $\sigma_{CB} \cdot \alpha_{Lor}$

Projection of signal pdf

ਙ 0.05⊦ 20

0.04

0.03

0.02

0.01

10³

 10^{2}

10

520

540

 $\Big(\left(\frac{n_L}{|\alpha_L|}\right)^{n_L} \exp\left(\frac{-|\alpha_L|^2}{2}\right) \left(\frac{n_L}{|\alpha_L|} - |\alpha_L| - \frac{x-\mu}{\sigma}\right)^{-n_L}, \quad \text{for } \frac{x-\mu}{\sigma} \le -\alpha_L$

Gaussian distribution

for $-\alpha_L < \frac{x-\mu}{r} < \alpha_R$

Background modelling

Statistical treatment of backgrounds:

- All backgrounds are merged
- Smoothly falling background modelled as third-order polynomial fit
- Polynomial coefficients constant are fitted to the data (keep total normalization floating)
- Sufficient statistics for all backgrounds

Backgrounds:

- 1. ZZ(inclusive), (Pythia)
- 2. $W^+(\nu\mu^+)W^-(\bar{\nu}\mu^-)$, (Pythia)
- 3. $Z \rightarrow l^+ l^-$, (Pythia)
- 4. $Z \rightarrow q \overline{q}$, (Pythia)
- 5. *eeZ*, (Whizard)
- 6. $\gamma \gamma \rightarrow \mu^+ \mu^- / \tau^+ \tau^-$ (Whizard)

Statistical Analysis

Statistical analysis performed using Combine (CMS statistical framework)

□ Signal and background analytical shapes are fitted to pseudo-data Asimov dataset

- Injected 125.0 GeV signal with cross-section of ~ 0.00677 pb
- \succ Free parameters: signal, background normalizations and m_H

□ Likelihood scans to extract cross-section and Higgs mass with robust uncertainties

 \Box First, without accounting for experimental uncertainties \rightarrow statistical-only result

Study of systematic uncertainties to assess the impact on the Higgs mass and cross-section measurement

- Uncertainties directly affect the recoil distribution shape and normalization
- Can be constrained with data, depending on source of uncertainty
- Considered uncertainties: BES, ISR, FSR, centre-of-mass, muon momentum scale

1) Beam energy spread uncertainty:

(nominal BES @ 120 GeV per beam: \pm 0.165% = \pm 0.198 MeV [Table S.1 of the CDR])

- 1. Determination of BES by bunch length measurement up to 0.3 mm accuracy \rightarrow 6% BES uncertainty
- 2. Data-driven BES constraining possible $ee \rightarrow ff(\gamma) \rightarrow 1\%$ BES uncertainty
- Generated additional signal samples @ 125.0 GeV with:
 - i. 6% BES variation: 2-3% shape effect observed at mass peak
 - ii. 1% BES variation: negligible variation ~ within statistical uncertainty

2) Initial State Radiation: ISR has impact on shape and normalization

- Recently revisited
- \Box ISR treatment in Whizard using structure function approach + ad-hoc photon p_T spectrum
- □ Benchmark Whizard and KKMC using $e^+e^- \rightarrow \mu^+\mu^-$ ISR samples
- □ KKMC being the state-of-the-art for ISR treatment, reweight the Whizard samples to KKMC with the p_T spectrum and take the difference as the systematic uncertainty

Systematic uncertainties

3) Centre-of-mass uncertainty: \pm 2 MeV

- □ \sqrt{S} parameter in the recoil mass definition → uncertainty induces ~ linear shift in the recoil mass distribution
- \Box Precision estimated to be 2 MeV at 240 GeV using radiative return events $Z \rightarrow l\bar{l}$ or $Z \rightarrow q\bar{q}$

4) Muon momentum scale: relative scale uncertainty variation of 10^{-5}

- Directly affects $m_{\mu^+\mu^-}$, hence shift in recoil mass
- □ Statistical potential to measure muon scale ~ 10^{-6} , but conservatively use 10^{-5} (the expected level of the magnetic field monitoring)

5) Final State Radiation: FSR has impact on shape and normalization

- Generated additional sample without FSR
 - Too drastic \rightarrow unrealistic estimation of FSR uncertainty!
- To do: Benchmarking against Sherpa to obtain more realistic uncertainties for FSR treatment

Systematic uncertainties

Different detector configuration studied:

- 1. Magnetic field increased from 2T to 3T
- 2. FullSilicon tracker instead of drift chamber (a la CLD)
- ightarrow expected better momentum resolution
- → degraded resolution due to enhanced multiple scattering, especially at low p_T and in the range relevant for this analysis

Stat-only results

M_{recoil} in Delphes and in Full Simulation

$M_{\mbox{recoil}}$ in Delphes and in Full Simulation

- Delphes: simplified detector card
- □ Full Simulation: performed by GEANT, more precise, Pandora reconstruction
- Analysis code developed over Delphes could be reused over the FullSim samples
- □ M_{recoil} in full simulation has slightly lower resolution
- The Difference between Delphes and Full Simulation is acceptable considering the simplified description

Fake Muon and muon isolation

- □ Fake muons are at low p_T , and are suppressed with an isolation criteria
- Delphes does not produce fake muons but it is not a problem for this analysis

Crossing Angle

- Head-on: not accounting for beams crossing angle
- Generated 15 mrad (<u>ref.</u>) crossing angle and 1% up and down sample, and boosted them back to head-on reference
- This analysis does not require the crossing angle to be known very precisely

Summary:

Optimized event selection to reject main backgrounds

- □Signal modelling with customized PDF
- Statistical analysis yields Higgs mass uncertainty 6.7 MeV, cross-section 1.07 % (stat-only)
- □Inclusion of systematic uncertainties results into 7.2 MeV / 1.10% respectively
- Difference between Delphes and Full Simulation is acceptable considering the simplified description
- This analysis does not require the crossing angle to be known very precisely
- \Box Increasing detector magnetic field from 2T to 3T has significant effect on m_H but small effect on cross-section

✤Outlook:

- Documentation of all studies + paper
- □FSR uncertainty
- Inclusion of electron channel
- □Systematics due to the background shape
- Categorisation of the events

Backup

Detectors under study

conceptually extended from the CLIC detector design

- full silicon tracker
- 2T magnetic field
- high granular silicon-tungsten ECAL
- high granular scintillator-steel HCAL
- instrumented steel-yoke with RPC for muon detection

- explicitly designed for FCC-ee/CepC
 - silicon vertex
 - low X₀ drift chamber
 - drift-chamber silicon wrapper
 - MPGD/magnet coil/lead preshower
 - dual-readout calorimeter: lead-scintillating/ cerenkhov fibers
- µRwell for muon detection

Evaluation of M_{recoil} distribution

3. $M_{\text{recoil}} \in [120, 140] \text{ GeV}$

- 2. $m_{\mu^+\mu^-} \in [86, 96] \text{ GeV}$
- 3. $M_{\text{recoil}} \in [120, 140] \text{ GeV}$
- 4. $p_T^{\mu^+\mu^-} \in [20, 70] \text{ GeV}$

- 2. $m_{\mu^+\mu^-} \in [86, 96]$ GeV
- 3. $M_{\text{recoil}} \in [120, 140] \text{ GeV}$
- 4. $p_T^{\mu^+\mu^-} \in [20, 70] \text{ GeV}$
- $\left|\cos\theta_{missing}\right| < 0.98$ 5.

Fitting model and parameter settings

How does the signal shape change as function of (true) Higgs mass mH?

- Generated extra samples around 125 GeV: 124.9, 124.95, 125.05, 125.1 GeV
- Found only significant dependency on the mean (both CB and Gauss) and yields
 - Dependency as function of mH described using Spline
- Other parameters set as constant (best-fit parameters @ 125.0 GeV, see backup for all fits)

FUTURE CIRCULAR COLLIDER

Signal fits with 2CBG

No bias in fits observed

18

Decomposition of 2CBG

$\mu^{\mu^{+}}$ with and without gen mass> 220 selection

FUTURE CIRCULAR COLLIDER

v_{τ}^{ZH} mumuH reweighting, mH Combine fit

Stat. Only

Stat.+ISR (rewei.)

Stat.+FSR (noFSR)

FUTURE CIRCULAR

COLLIDER