

Status of the software

5th FCC Physics Workshop

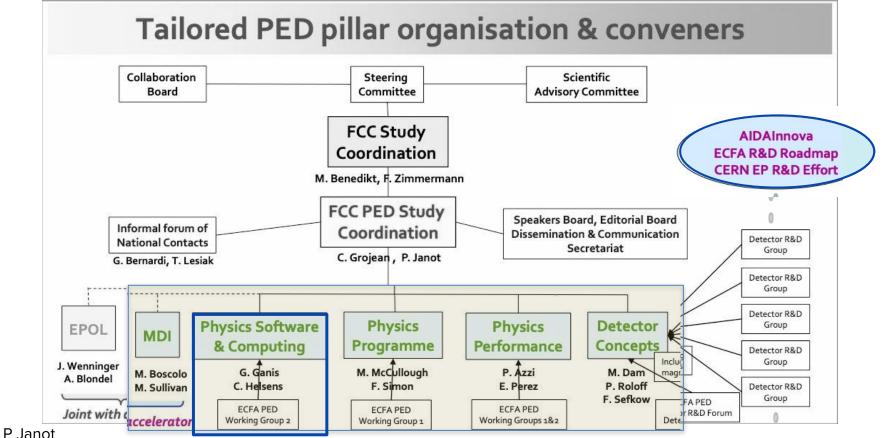
Feb 10, 2022 G Ganis CERN-EP

S&C goals for the workshop

Advertise status of things and available workflows

Today

Address technical aspects of detector concept implementation


- Strengthen connections with all the other branches in PED
 - In particular with the new-born Detector Concepts group
- Engage the community towards full simulation and reconstruction

Present current status of the updated S&C group mandate

Tomorrow

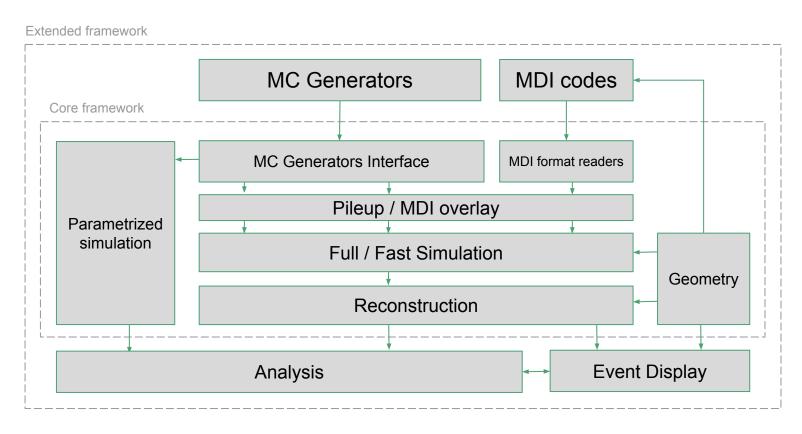
Role and relation with other groups

Relation with R&D activities

CERN EP software R&D

- All carried-on task/activities are connected to FCC needs
- Key4hep is crucial, but all the other carried-on activities are connected
 - E.g. (ML-based) fast simulation of calorimeters, RNtuple-related analysis improvements

AIDA Innova


- Very similar palette of software R&D activities
- Could potentially also profit of some person power for specific tasks

ECFA R&D

- Connection with WG2 (Physics Analysis Methods)
 - Generators, Simulation, Reconstruction, Algorithms & Tools, Software Ecosystem

Typical workflows to support

FCCSW approach

Started in 2014, focus on FCCee after CDR (2019)

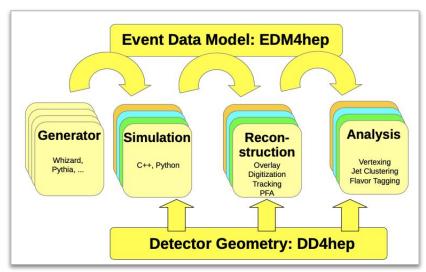
- Adopted Strategy
 - Adapt existing solutions from LHC (Gaudi, ...)
 - Look at ongoing common R&D projects (AIDA)
 - Invest in streamlining of event data model

- Driving considerations
 - One software stack to support all the cases (hh,ee,eh), all the detector concepts
 - Need to support physics and detector studies
 - Parametrised, fast and full simulation (and mixture of the three)
 - Modularity: allow for evolution
 - Component parts can be improved separately
 - Allow multi-paradigm for analysis
 - C++ and Python at the same level

Key4hep, the common software vision

Create a software ecosystem integrating in optimal way various software components to provide a ready-to-use full-fledged data processing solution for HEP experiments

Complete set of tools for


- Generation, simulation, reconstruction, analysis
- Build, package, test, deploy, run

Core ingredients

- PoDIO for EDM4hep, based on LCIO and FCC-edm
- Gaudi framework, devel/used for (HL-)LHC
- DD4hep for geometry, adopted at LHC
- Spack package manager, lot of interest from LHC

Community project, unifying efforts

Contributions from CLIC, ILC, FCC, CEPC

Kick-off meetings in **Bologna**, **Hong Kong**

Full support by ECFA, AIDA, CERN EP R&D

FCCSW: status of things

Main goal for 2021: move to key4hep

•	Monte Carlo generators	√≍
	 General purpose + old LEP available Treatment of BES, x-angle, still in progress 	
•	MDI interfaces	\\
	 GuineaPig prototype available, start investigation of SR 	
	Fast simulation (Delphes)	····· ✓
•	 Full simulation and reconstruction Single components available (machine elements, simplified vertex+DC, LAr calo,) CLD (reconstruction through iLCSoft wrappers) IDEA standalone, integration scheduled 	×
•	Distributed computing o iLCDirac instance set up (CERN, CNAF storage)	√≍
	Analysis	√≍
	 FCCAnalysis (EMD4hep, ROOT::RDF) 	
	Documentation	√ =

Monte Carlo Generators @ key4hep

- All relevant generators available
 - Including legacy LEP ones: KKMC, BHLUMI, BabaYaga, ...
- Repository of ready-to-use codes
 - (Software-wise) sanitized: build, tested (with provide test suite)
- Interfaces to key4hep processing chain (k4Gen)
 - Support for relevant data formats
 - Auxiliary tools related to MC particles (filters, boost tools, ...)

Connections w/

- Physics Programme
- Physics Performance
- Phenomenologists
- Key4hep
- ECFA

Generators: relation w/ ECFA

- One of the work areas of WG2
- 1st workshop on Generators: 9-10 Nov 2021
 - Taking stock
 - Set up contacts (among authors)
 - Discussion of formats and k4Gen role (see next)
 - Identified topics for follow-up focus workshops
 - Beamstrahlung, Interfaces, Benchmarks
- 1st focus workshop on beamstrahlung: 12 Jan 2022
 - Dissection of limitations of GuineaPig and related approaches (CAIN)
 - Main uncertainties arise from missing knowledge of input beam distributions
 - Better estimates by using input files from existing tracking codes
 - Need to develop the measurement procedure to be applied on the data
 - Possible double counting of ISR to be investigated

Discussion of formats and role of k4Gen

- Have a small number of well defined I/O output(s)
 - Efficient(s) and compressed
 - Baseline: EDM4hep@{ROOT, SLCIO}, HepMCv3@ROOT (common among MCs)
- Recognized role of HepMCv3
 - Possibly provide / contribute converter to EDM4hep
 - LHEf not adapted for this
- Boundary generators / key4hep
 - Baseline: generators provide fully hadronized events
 - Key4hep starts from the generator output
 - In particular, dedicated decayers, hadronizers, should be run before, i.e, by the generator
 - HepMCv3 / EDM4hep formats preferably
 - Modules providing a direct MC to EDM4hep interface can still be accommodated
 - E.g. PythiaInterface, HerwigInterface, ...
 - Possibly under the responsibility of the authors (to be discussed)

Beam and MDI-related backgrounds

- FCCee complex interaction region combined with high statistical precision requires deep level of understanding of the detector backgrounds (*)
 - Only achievable with integration in experiment software
- Several codes for modeling the processes (<u>EPJ+ contribution</u>)
 - Codes not always in public repositories, outputs in different, non-standard formats
- Target: supercode providing common interface to relevant codes
 - Unified/simplified access with controlled configuration and normalization
 - On going effort, example w/ GuineaPig available
- Consistent description of the relevant geometry elements
 - Requires interplay between detector and machine geometry formats (e.g. CAD)

Connections w/

- MDI study group
- Physics Performance
- Detectors

(*) Active working group with experts from relevant fields (machine, physics performance, detectors, software)

Parametrized Simulation

- Current studies are mostly based on <u>Delphes</u>
 - Includes a tracking system, embedded into a magnetic field, calorimeters and a muon system
 - TrackCovariance, dEdx, ParticleDensity: enable realistic algorithms for vertexing, b-tagging, ...
 - Effect of magnetic field, granularity of calorimeters, sub-detector resolutions
 - Interfaced to standard file formats (e.g. LHEF, HepMC)
 - Key4hep provides Delphes interfaces/executables producing EDM4hep output
 - Palette of detector concepts for e⁺e⁻ available
- <u>SVG</u> (used by the LC community) being also considered in key4hep
 - Potentially more complete and faster
 - Needs some adaptation work (EDM4hep output, ...)

Connections w/

- Physics Performance
- Detectors
- ECFA

Nice reviews and usage examples at 1st ECFA simulation workshop 1-2 Feb 2022

Geometry description: DD4hep

- Description of geometry and material for all relevant elements
 - Sub-detectors and related elements (supports, ...)
 - Relevant MDI elements
- Single source for the several needs
 - Simulation, Reconstruction, Event Display, ...
 - MDI studies
 - Including CAD interoperability
- DD4hep provides all that. And more
 - DDG4, DDRec, DDCond, ...
 - AIDA project fostered by LC community and now adopted by CMS, LHCb as of Run3

Simulation

Connections w/

- Key4hep
- ECFA (1st Simulation workshop)

Full simulation uses Geant4

k4SimGeant4

- Gaudi module supporting
 - User actions, regions, sensitive detectors, selective output options
- Mixing fast and full G4 simulation possible (SimG4Full / SimG4Fast)
- Based on LHCb approach: Gaudi is in control of the event loop

DDSim

- DD4hep standalone interface to Geant4
- Used in iLCSoft
 - Lot of tools available from LC (digitization, ...)
- Currently only way to fully simulate/reconstruct CLD (also for FCCee)

Future: k4Gaussino

Based on new LHCb approach, might allow easier re-use of code

Detector palette

- <u>FCCDetectors</u> contains what is currently available
 - Elements of the interaction region (BeamPipe, Instrumentation, HOMAbs, LumiCal)
 - CLD (CLIC detector for FCC)
 - LAr calorimenter
 - Simplified Elements for IDEA (no calo, no muon)
 - Simplified Elements for IDEA with FCChh adapted calo (LAr/Tile) (no muon)
 - FCChh baseline (+ some variants)

Standalone implementations

- IDEA Dual-Readout calorimeter: <u>dual-readout</u>
- IDEA Drift Chamber and vertex: <u>DriftChamberPLUSVertex</u>

Connections w/

- Detectors
- Physics Performance

Joint session on Friday

Supporting detector concepts studies

- Adequate support for sub-detector concepts developers
 - Documentation, templates, examples, ...
 - Need to provide/define envelopes where to fit in the sub-detectors
- Plug&Play support
 - Support for detector concepts creation as combination of sub-detector solutions
 - Tracking, calorimetry, muon detection, ...
 - Includes overall sub-detector integration test
- Git repository with sub-detector concepts
 - With proper and efficient versioning
 - Sub-detector specific and global (for the assembly)

Supporting detector concepts studies (2)

- Visualization
 - Is what provided by DD4HEP enough (geoDisplay)?
 - Perhaps integrated with the event display
 - Phenix? See latest developments driven by LHCb
- Debugging tools
 - Checking for overlaps, radiation lengths, ...

Reconstruction

- Little specific to FCC-ee
 - Tracking and calorimetric algorithms for baseline FCC-hh
 - Full sim studies for FCCee not really started
- Lots of algorithms available for iLCSoft
 - Accessible through LCIO to/from EDM4hep on the fly converter
 - Enables initial studies and evaluations
 - Base / reference for native implementation when required
- Need to integrate algorithms attached to a given detector concept
 - o E.g. IDEA Drift Chamber or Dual Readout calorimeter
- Ongoing framework integration of general purpose tools such as ACTS, PandoraPFA,
 CLUE/TICL, ...

Connections w/

- Physics Performance
- Detectors
- Key4hep
- ECFA (1st Reco Workshop May 4-5 2022)

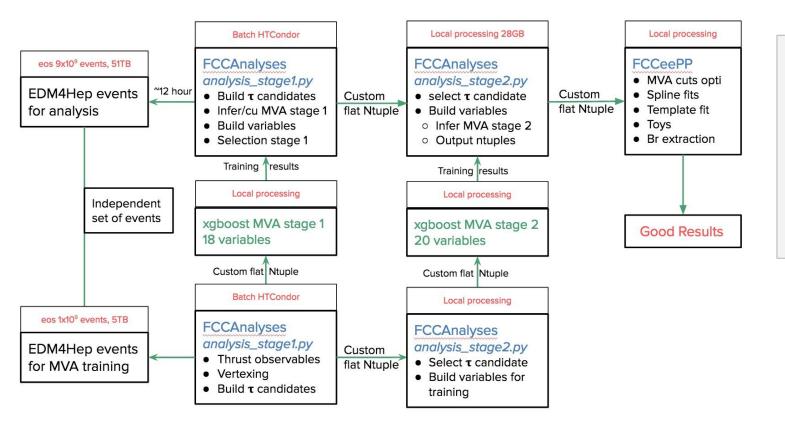
Analysis: FCCAnalysis

- Replaces the fully pythonic HEPPY framework used for CDR
 - Good functionality but extremely slow
- Based on RDataFrame, new ROOT paradigm aimed for (HL-)LHC
 - Python framework with C++ backend
 - Bridges the gap with LHC involved people
- Runs on EDM4hep, non FCC specific
 - Prototype of generic analysis framework

Analysis configuration 4 **python** scripts to configure:

- Samples to run over
- Functions/algorithm to call
- 3. Event selection
- Plotting configuration

Connections w/


- Physics Performance
- Key4hep

Common utility functions, algorithm, etc...

C++ library

Common interface code Sample database, RdataFrame, plotting **Python**

First <u>published</u> analysis with FCCAnalysis: $B_c \rightarrow \tau^+ v_{\tau}$

Involves:

- Distributed processing
- Storage
- ML Training
- Fitting
- Local processing
- ...

Resource needs for the FSR

- The run at Z peak sets the scale
 - \circ ≈10¹² evts, 3-6 EByte storage, 10 MHS06 CPU (≈ current ATLAS yearly needs)
- These numbers are similar to the ones expected for (HL-)LHC
 - Do not expect issues for operations in 2040 and beyond
- For the FSR the situation is different
 - Analysis at Delphes level are possible (see $B_c \rightarrow \tau^+ \nu_{\tau}$)
 - Full simulation of all components require 10³-10⁴ times more
- Techniques of overcome this limitations are required
 - E.g. interplay of full and parametrized simulation
- Planned community improvements in fast simulation very welcome
 - Possible improvements of the parametrized simulation treatment of critical parts such as calorimetric object could also be envisaged / investigated
 - E.g. based on improvements of fast simulation à la Geant4/GFlash or Machine Learning / GAN

Event Producer Workload / Data Management

- Currently still using home-made solution (HTCondor, EOS, ...)
 - Served well CERN-based productions (CDR, Spring 2021)
- Inclusion of non-CERN resources desired
 - Main requirements: central file catalogue, replication, remote access
 - Major development for the in-house system
- iLCDirac: LC community DIRAC instance
 - Workload management, file catalogue used by LHCb, Belle II, BES III, JUNO, ILC/CLIC, ...
 - Already serving another VO (CALICE)
- FCC @ iLCDirac
 - Re-activated FCC VO
 - Associated CERN FCC resources to FCC VO (HTCondor, EOS area)
 - Added steering applications of interest for FCC workflows
 - Storage organisation based on LC and LHCb experience

Connections w/

- Key4hep
- Physics Performance

Thanks to

- A Sailer (CLIC, key4hep)

FCC @ iLCDirac : adding resources

- Grid model
 - Sites can decide to add resources to the VO
 - CPU + storage, storage only
- First integration of external site: CNAF (storage only)
 - Can replicate files between CERN-EOS ad CNAF
 - Common catalogue view, Remote access enabled

Enable sharing of public productions through optimisation of computing resources

Summary

- Plans for 2021 mostly achieved
 - Adopted key4hep and consolidated Delphes-based workflow
- Next is to fully engage in full simulation and reconstruction
 - Strengthen connections with Physics Performance and Detector Concepts groups
- Fruitful connection established with ECFA and R&D projects
- Planning of resources required for FSR
 - Interplay full / parametrized simulation
 - Framework to add national contributions enabled

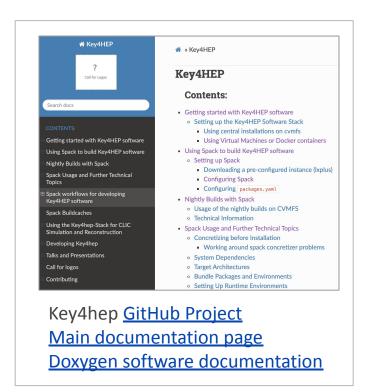
Software solidity requires the contribution of skilled users

• The community should feel engaged in supporting/fostering the effort

Useful pointers

Project repositories

- GitHub: https://github.com/key4hep
- CernVM-FS: /cvmfs/sw.hsf.org, /cvmfs/fcc.cern.ch

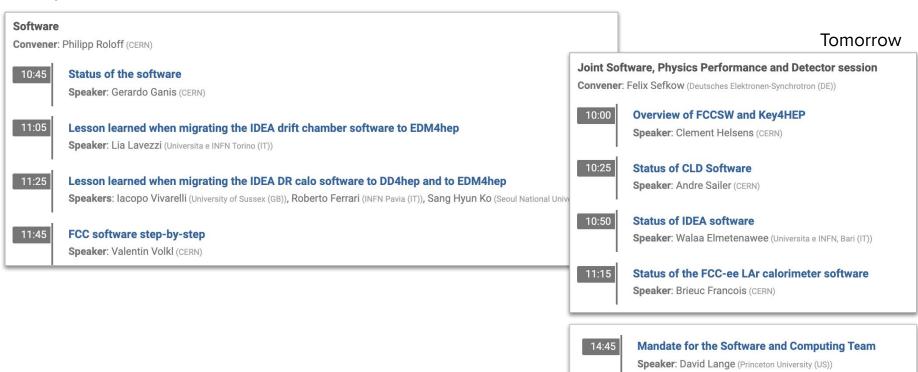

Forum: https://fccsw-forum.web.cern.ch/

Existing documentation: https://hep-fcc.github.io/fcc-tutorials/index.html

EPJ+ Software & Computing contributions (Part IV)

- Accelerator-related codes and their interplay with the experiment's software
- Online computing challenges: detector and readout requirements
- Offline Computing resources for FCC-ee and related challenges
- Key4hep, a framework for future HEP experiments and its use in FCC

Documentation, tutorials, ...



Workshop software sessions

Today

