

th FCC PHYSICS WORKSHOP **07 – 11 February 2022**

Test Beam Results and R&D Programme for a Highly Granular Fibre-Sampling Dual-Readout Calorimeter

Gabriella Gaudio

on behalf of the IDEA Dual-Readout Calorimeter Collaboration February, 8th 2022

The 2021 test beam prototype

10x10 cm² divided in 9 towers, 1m long 16x20 capillary each (160 C + 160 S fibres)

Capillary: 2mm OD, 1.1 mm ID Material: Brass

- Hi-quality commercially available capillary tubes
- Quite easy and fast assembly system
- Test the viability of this mechanical solution

2021: DESY and CERN SPS beam test

- Energy and position scans I-6 GeV e-
- Geant4 validation
- Timing information with large angle measurements

- e^+ with energy range 10 -125 GeV
 - Energy and position scan
 - e^+ beams highly affected by π contamination
- μ^+ in non-monochromatic beams

Data Handling and workflow

Indipendent acquisitions for SiPM and PMTs (+ auxiliaries)

https://github.com/lopezzot/DREMTubes

The impact of high granularity

(DESY) Beam @ 6GeV centered on the SiPM tower Adc high gain 0 2 4 6 8 10 12 14 Adc low gain 0 2 4 6 8 10 12 14

450

1000

Hamamatsu SiPM: S14160-1315 PS Cell size: 15 μm

CITIROC 1A: block diagram

1400 160

SiPM calibration – High Gain

Low gain calibration using the HG - LG correlation plots

we get the calibration for the low gain (ADC - phe) for each run and each SiPM

Shower shape measurement

Lateral profile: the average signal carried by a fiber located at a distance from the shower barycenter

Measurement:

- For every event, and for every fiber, we populate a scatter plot (signal vs. distance)
- Lateral profiles are extracted as average values for every x-bin

Shower shape measurements

Data - Geant4 comparison

- Non negligible dependence of the shower shape on the impinging angle
- Good agreement at 20 GeV when including a systematic error on the impinging angle (±0.2°)
 - Both shower "core" and "tails" properly reconstructed
- Sensible differences found between the scintillation and Cherenkov signals at any energy scale

HiDRa2 – Hadronic Full containment DR Calo

The design of a scalable solution

The challenge: The Mini-Module preliminary Index mark 7x 2.0 = 14.0 15.35 ± 0.05 15 (TBD) 32 x 16 capillaries 1 capillary: (2mm OD and 1.1mm ID) Index mark

- 1 SiPM per Fibre: compact package
- SiPM with high Dyn-Range: 10µm pitch
- No contamination between Cherenkov and scintillating light

- Custom designed module with 8 SiPMs $(1x1mm^2)$
- SiPM interspace: 2mm
- Two options under study: 10 and 15 μm pitch

The design of a scalable solution

□ The signals from 8 SiPMs are summed up in the grouping board

Plate-based (+3D printing) calo (Korea)

Refurbishing Cu Plates

Module #2 (3x3)

ower 1	Tower 2	Tower
ower 4	Tower 5	Tower
ower 7	Tower 8	Tower

Tower#1	Tower#2	Tower#3
Tower#4	Tower#5	Tower#6
Tower#7	Tower#8	Tower#9

92x92mm², 2.5 m long

reamp	board	based	on	DRS4
-------	-------	-------	----	------

NIM A830 (2016) 119 H. Kim et al.

Reusing two RD52 Cu module

- disassemble, recuperate Cu plates
- new fibers

R&D Goal

- Different light sensors under study (MPT, MCP-PMT and SiPM)
- Study of various type of optical fibers (scintillation)
- Time resolution (100 ps processing)

- "EM-size" DR module has been built and tested at DESY and CERN TB
 - Study mechanical solution
 - Scale-up number of SiPMs
 - Electromagnetic performance
- Funded projects in both INFN and Korea will allow to build and exploit hadronic scale prototypes
 - Study scalable solution toward TDR
 - Assess hadronic performance

17

Additional Material

The 2021 test-beam prototype

Readout:

- I central tower read out by SiPMs
- 8 surrounding towers read out by PMTs (à la RD_52)

Hamamatsu SiPM: S14160-1315 PS Cell size: $15 \ \mu m$

PMT readout: Hamamatsu Cherenkov: R8900-100 Scintillation: R8900

Plate-based calo sensors: SiPM, PMT, MCP-PMT

MCP-PMT: excellent timing performance

PMT: window size and timing performance

MCP-PMT	Window size	Light / pour size	Q.E. (Bialkali)	max. HV (V)	Rise time (ns)	photo
PLANACON XP85012	53x53	scintillation / 25 um	~7% at 550 nm	2400	0.6	
PLANACON XP85112	mm ²	Cerenkov / 10 um	~21% at 400 nm	2800	0.5	

https://www.photonis.com/products/planacon

РМТ	Window size	Q.E. (Super bialkali, SBA) Ck. Sc.		max. HV (V)	rise time (ns)	photo
R11265-100	23x23 mm ²	~35% at 400 nm	~7% at 550 nm	1000 https://w	1.3 ww.hamam	atsu.com

The biggest number of pixels (16675) have been chosen

to avoid the saturation effect of photon counting for the scintillation lights.

SiPM	Photo- sensitive area	pixel size	Photo det (Silicon	ection eff. e resin)	number of pixels	photo
S14160- 1310PS	1.3x1.3 (1.69 mm ²)	10 µm	~15% at 400 nm	~17% at 550 nm	16675	

Cu 3D printing

- Exploiting 3D printing technique to obtain desired shape
 - 5 tiles 30.3 x 30.3 mm² (front), 45.3x45.4 mm² (back), 100 mm long
- Ist projective module
- Easy alignment of the tiles and fiber insertion
- Ultra-high cost

Cu Lego Module

Figure 27: Direct stacking of copper shims and fibers. The shims bear the load.

Figure 28: Direct stacking of copper wires (1.05mm diameter) and fibers on 0.5mm copper sheets. The slightly oversized copper wires carry the load.

- Ingredients: housing, copper wall, copper plate
- Use ingredients available in a market as much as possible
 - housing (copper pipes)
 - structure/wall: copper wire or plates, skiving fin heatsink

45x45 mm², 50 cm long

Citiroc1A based readout

- Two CitirocIA for reading out up to 64 SiPMs
- One (20 85V) HV power supply with temperature compensation
- Two I2-bit ADCs to measure the charge in all channels
- Timing measured with 64 TDCs implemented on FPGA (LSB = 500 ps)
- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)

DRS based readout

DRS4

NIM A 623 (2010) 86, Stefan Ritt et al.

- DRS (Domino Ring Sampler) based on SCA (Switched Capacitor Arrays)
- Number of channel (input + trigger): 8 + 1 ch
- Sampling frequency: 1~5 GS/S (1 ns ~ 200 ps/sampling depth)
- Number of sampling depth: 10 bits
- Power consumption: max. ~40 mW/ch max. 19.2 W for 60 DRS chips (480 ch)

Operation Mode

Specification of DRS4 chip

Preamp board based on DRS4

NIM A830 (2016) 119 H. Kim et al.

Average FWHM with DRS4 & SiPMs

Trigger mode	Data Type	Data Size	Control Bus	Expected Trigger Rate (kHz)
Waveform & Bin event modes	Waveform data during gate open and ADC peak and its time values over the threshold	16 bits per channel (64 kBytes/32ch)	USB3 (~1 GBps)	~0.1 kHz
Fast DAQ & Bin event modes	ADC peak and its time values over the threshold	8 bits per channel (256 Bytes/32ch)	USB3 (~1 GBps)	~25 kHz
Bin event mode	Pedestal data during periods in between beam spills (pedestal trigger mode (every 1 ms) with external beam trigger)			

AARDVARC based readout

Fig. 8. Dependence of the starting time of the PMT signals on the average depth (z) inside the calorimeter where the light is produced (the dash-dotted line). This time is measured with respect to the moment the particles entered the calorimeter. Also shown are the time it takes the particles to travel to z (the dashed line) and the time it takes the light to travel from z to the PMT (the dotted line).

Timing information is a key element for PID in a longitudinally unsegmented fiber calorimeter

Parameter	Spec
Sampling Rate	1-2 GSa/s
ABW	> 600MHz
Depth	2k Sa
Trigger Buffer	~3 us*
Deadtime	0**
Channels	64
Supply/Range	2.5
ADC bits	12
Timing accuracy	80-120ps
Technology	250 nm CMOS
Power	TBD

HDSCoC Produced by Nalu Scientific

System on Chip with a built in SiPM biasing

- On chip calibration
- Serial interface
- On chip feature extraction
- Virtually dead-timeless
- 32 ch proto chip fabricated
- Phase II SBIR awaiting award
- Next steps: packaging and eval