

DMAPS for large area FCC Trackers Liverpool, 9th February 2022

Attilio Andreazza

Università di Milano and INFN

For the INFN and UK CEPC CMOS Tracker communities

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

CEPC CMOS Tracker Community

KIT + China + UK + INFN + Australia collaboration

Institute of High Energy Physics Chinese Academy of Sciences

NORTHWESTERN POLYTECHNICAL UNIVERSITY

旱

犬

ERSITY OF SOUTH

• Motivations

• ATLASPIX3 Prototyping for Feasibility Study

• Some trendlines in sensor development

e **+***e* **- Detector Requirements**

- Similar approaches for ILC, CLIC, FCCee, CepC:
	- High resolution **pixel vertex detector** $O(\text{few } m^2)$
	- Either **full silicon tracker** or **central gas chamber + Si wrapper** $O(100 \text{ m}^2)$

DMAPS (example ATLASPIX3)

• **Depleted Monolithic Active Pixels Sensors**

- CMOS process allows to produce **large areas**, **fast** and **cheap**
- **no hybridization** (bump-bonding) needed
- **single detection layer**, can be **thinned** keeping high signal efficiency and low noise rate

• **ATLASPIX3 features**

- pixel size 50 \times 150 μ m² (25 \times 165 μ m² feasible)
- up to 1.28 Gbps downlink
- reticle size 20×21 mm²
- TSI 180 nm process on 200 Ωcm substrate
- 132 columns of 372 pixels
- digital part of the matrix located on periphery
- both **triggerless** and **triggered** readout possible:
	- two End of Column buffers
	- 372 hit buffers for triggerless readout
	- 80 trigger buffers for triggered readout

Si Wrapper: why DMAPS?

2S module

PS module

Precision θ measurements also improving systematics

and accurate measurements on the Z pole

See A. Andreazza *From vertex to wrapper: the IDEA tracklng system for FCC-ee* FCC Workshop June 2021

• Tracker area is similar to LHC trackers

• Area size within production capabilities of CMOS foundries

• One thin silicon layer instead of strip doublets

- The target power density of next generation DMAPS detector is comparable with HL-LHC strips
- Cost is not so different, if one considers half silicon area is needed

CEPC Baseline layout

Baseline tracker design: TPC

and 3 layers / 5 disks of silicon sensors,

50 m² (33 w/o ETD) if built in CMOS pixels (strips default)

 $\sigma_{\rm r\phi} \approx 7 \mu \rm m$

ATLASPIX3 Modules

- Multi-chip module assembly
	- aggregates electrical services and connection for multiple sensors
	- quad module, inspired by ATLAS hybrid pixels
	- implemented interface to laboratory readout system
	- future version with **ATLASPIX3.1**:
		- full usage of on-chip internal regulators
		- compatible with serial powering

Stave Electrical Bus

- Distribute power and data signals along the stave structure
- Assume minimal I/O connection on chip:
	- All biases generated internally by shunt-LDO regulators
	- chip-to-chip data transmissions: local data aggregation on module
	- clock data recovery
- Requirements:
	- LVDS command input
	- LVDS data output at 640 Mbps on ~700 mm (half)stave length
	- Serial powering assuming 0.5 A/chip, 2 A/module
	- HV distributed in parallel to all modules
- Integrated signal and power bus:
	- Power distribution and return layers
	- Signal lines on top and bottom layers
	- Interconnection by soldering or wire bonding
- Alternative under study:
	- separate power cables + twinax for signal (the LHC way) $\begin{array}{c|c} \hline \text{separable} & \text{if the number of times } \end{array}$

Long stave structure

Inspired to ALICE project, but with different specifications

UNIVERSITÀ **DEGLI STUD DI MILANO**

- **Gluing mask** for realization of the 3D truss structure
- Goal of the mechanical structure: **max radiation length 0.3% X₀**

Populated cold plate

Cold plate to hold and cool a row of 32 modules.

- Carbon fiber plate
- Refrigerant: demineralized water below atmospheric pressure, at $T=15$ °C
- Heat dissipation 200 mW/cm²
- Thin Kapton pipes, 2mm diameter, held by carbon paper

Electronic Chip Concentrator

Cold Plate Terminal Part

- Asymmetric arrangement:
	- hermeticity along $φ$

UNIVERSITÀ DEGLI STUDI DI MILANO

- space for data and power connection
- Carbon tube support
- Saddles provide mechanical and thermal connection to support by foam heat exchanger

Liverpool

Pre-prototypes thermal evaluation

Pre-prototype: Base attached to tube & heaters on

- Investigate performance of high-thermal conductivity (eg Allcomp) foams as a heat exchanger
- Combination of large area and increased stream velocity through foam can lead to high efficiency
- Characterise performance (i.e. temperature rise vs power) for different flow velocities
- Develop FEA models simulating the fluid flow through foams

First look: at 3.1W power (expected from 8cm×**4cm area), temperature rise ~10^oC w.r.t. CDA**

Liverpool

Si tracker: system considerations

- **Complete system consists of 900'000 cm² area / 4 cm² chip = 225k chips (56k quad-modules)**
	- aggregation of several modules for data and services distribution is essential
	- inner tracker will be 5--10% of this
- **Data rate** constrained by the inner tracker
	- $-$ average rate 10^{-4} 10^{-3} particles cm⁻² event⁻¹ at Z peak
	- assuming 2 hits/particle, 96 bits/hit for ATLASPIX3
	- **640 Mbps link/quad-module** (assuming local module aggregation) provides ample operational margin
	- 16 modules can be arranged into **10 Gbps fast links**: **3.5k links**
		- can also assume 100 Gbps links will be available: 350 links
- **DAQ architecture**
	- **triggerless readout** will fit the data transmission budget but requires off-chip re-ordering of data
	- **triggered readout** will be **simpler** and would also reduce the bandwidth occupancy
- **Power consumption**
	- ATLASPIX3 power consumption **150 mW/cm²**
	- $-$ 600 mW/chip \rightarrow 2.4 W/module \rightarrow **total FE power 130 kW**
	- additional power for on detector aggregation and de-randomizations **~2W/link**

Further ATLASPIX developments

- Engineering run developing the ATLAPIX3 family
- Design driven by KIT
- Contribution from LHCb Mighty Tracker, CEPC and other projects
- To test evolutions of ATLASPix3:
	- $25 \mu m$ pitch in the bending plane
	- Lower capacitance
	- Amplifier (PMOS→N/C-MOS) and comparator (NMOS \rightarrow P/C-MOS) designs
	- Electronics in pixel or in periphery
	- **Daisy chain readout**

Higher integration technologies

Started development with Shangai Huali Microelectronics Corporation

• HLMC 55 nm HVCMOS technology

INIVERSITA

- also 40 nm and 28 nm nodes available
- HLMC technology offers similar layers as TSI:
	- deep n-well
	- maximum voltage for HV transistors is 32V
	- Metal layers 1–6 can be used for fine pitch routing
	- three more thick metal layers, suitable for power
	- LV 1.2V
- The realistic pitch is down to 0.2 μ m
	- relaxed and according to recommendation it is 0.3 μ m (in 180 nm it was 0.6 μ m)
- Test sensor of 3×2 mm² will be submitted as MPW run in March 2022

ARCADIA Project

- CMOS DMAPs Platform
	- Started as INFN project, collaborations with Switzerland and China
	- Project within AIDAInnova WP5
- Fully depleted monolithic sensor
- LFoundry 110 nm CMOS process
- Pixels:
	- sensor and back-side processing already tested on silicon
	- $-$ 25 \times 25 μ m² size
	- pixel area 50% analog 50% digital
	- small collection electrode (20% of pixel area)
	- versions with ALPIDE and BULKDRIVEN front-ends
	- characterization of the readout architecture ongoing

Conclusions

- Large area O(100 m²) silicon trackers are a key feature of FCCee layouts
- DMAPS are an attractive solution
	- pixelated readout gives equal resolution in both coordinates, and it may help in reducing systematics of high precision measurements
	- monolithic solution provides low material and it is affordable in term of services and power
- The ATLASPIX3 chip already allows to build demonstrators
	- feasibility studies of the detector concepts and services
	- low material large size mechanical structures
- R&D is on-going on sensors improving performance and adding features
	- low power consumption readout architectures
	- small feature size for finer segmentation and more digital functionalities

BACKUP

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

FCC-ee Detectors: CLD

Full Silicon Tracker

- Pixel vertex detector:
	- Barrel, 3 double layers, r=1.7, 2.7, 5.7 cm
	- Disks, 3 double layers, |z|=16, 23, 30 cm
	- $-$ 0.6-0.7% X_0 per double layer
- **Inner tracker:**
	- **Strips and pixels**
	- **12.7<R<57.5 cm, |z|<2.2 m**
	- $-$ **1.1-1.5% X₀** per layer
- **Outer tracker:**
	- **Strips**
	- **67.5<R<210 cm, |z|<2.2 m**
	- **1.1-1.5% X⁰ per layer**

FCC-ee Detectors: IDEA

- **Vertex detector: 5 (Depleted)MAPS layers r = 1.7 – 34 cm**
- Drift chamber $(112$ layers): 4 m long, $r = 35 200$ cm
- **Si wrapper: Strips, barrel at r=2 m and drift chamber endplates z=2 m**

5th FCC Physics Workshop, 09/02/2022 A. Andreazza - DMAPS for large area FCC trackers 21

 $\sigma_{\rm pt}$ /pt

rack angle 90 deg. **IDEA**

IDEA

CLD

CLD MS only

IDEA No Si wrapper

 0.005

 0.0045

 0.004

 0.0035 0.003

CMS Tracker Modules

Si Wrapper: why pixels?

- **For cross section measurements need to keep systematics on the angular acceptance at the level of 50 µrad at** $\theta = 10^{\circ}$ **.**
- in principle, silicon is a very good ruler:

INIVERSITÀ

- Inner Silicon Tracker disks: at 40 cm, δR_{sys} <20 µm
	- alignment in principle is better than that, but stability need to be followed accordingly
	- for example: in ATLAS seen few um systematics movements, but the tracker support will be much lighter in IDEA
- SiWrapper: at 2 m, δR_{sys} <100 µm
	- benefits from pixel structure (order of pixel size)
	- if anchored to the calorimeter provides an independent frame, giving some redundancy
- With 50 µm pitch pixels and digital readout, $\sigma_z = 14$ µm, expect a θ resolution below 10 µrad
	- with the caveat that multiple scattering effects can be of a similar order of magnitude than the asymptotic resolution even for $Z \rightarrow \mu \mu$ events: 1% X_0 is 30 μ rad for p=45 GeV at 90 $^\circ$
	- instabilities at the μm level may have an impact in the accuracy of the acollinearity measurement for beam angle crossing determination
	- having an independent detector with 2 m lever arm and same resolution as the inner tracker will allow the monitoring and correction of instabilities in both coordinates

Lab tests with X-ray tube

- Amptek Mini-X2 with silver anode, max energy 50 kV
- **Linear readout rate** from **10 uA – 160 uA** at 25 kV without low-energy filters
	- 5 minutes source runs without biasing voltage
	- Missing threshold tuning, set average DAC value
	- Rate range: \approx 1.5 x 10⁴ hits/s to \approx 3.4 x 10⁴ hits/s
- Components on the PCB can be easily identified

Cold plate

ARCADIA Main Demonstrator

- Matrix core 512 x 512, "side-abuttable" to accomodate a 1024 x 512 silicon active area (2.56 x 1.28 cm²)
- Each 2x512 Column is composed of 2x32-pixel Cores
- Matrix and EoC architecture, data links and payload ID: scalable to 2048 x 2048
- Clock-less matrix integrated on a power-oriented flow
- Triggerless binary data readout, event rate up to 100 MHz/cm²
- Submitted 11/2020, back from foundry on 04/2021, now under characterization. 2nd and 3rd run expected in 2021 and 2022.

UNIVERSITÀ

DI MILANO

High precision measurements (1)

Strong requirements on detector design come from the systematics

in high precision measurements

UNIVERSITÀ DI MILANO

High precision measurements (2)

Strong requirements on detector design come from the systematics in high precision measurements

Example: center of mass energy correction from beambeam interactions

UNIVERSITÀ

DI MILANO

Beam-beam interactions change the energy and direction of the beams:

• changes are correlated such that center of mass energy is constant:

$$
\sqrt{s} = \sqrt{E_0^+ E_0^-} \cos \frac{\alpha_0}{2} = \sqrt{E^+ E^-} \cos \frac{\alpha}{2}
$$

- but α_0 is only measured with 0.1 mrad accuracy by the BPM
- It can be derived by monitoring the measured value of α as a function of the beam intensity
- With statistical uncertainties $\sigma_{\theta,\varphi}$ of 0.1 mrad, can get a 0.3 µrad uncertainty on α in ~5 minutes

See P. Janot's talk at FCC Week 2019

But what about systematics?

Beam-beam effects

Again, why does it matter?

 \sqrt{s} is not affected by beam-beam effects, but ... \Box

$$
\sqrt{s} = 2\sqrt{E_+^0 E_-^0} \cos \frac{\alpha_0}{2} = 2\sqrt{E_+ E_-} \cos \frac{\alpha}{2}
$$

We measure this ...
But not that ...
orthat.

- It is therefore necessary to find a way to measure $\delta\alpha$ (and therefore $\alpha_0 = \alpha \delta\alpha$) \Box
	- With a precision $\Delta\delta\alpha$, which translates into a precision $\Delta\sqrt{s}$

$$
\frac{\Delta\sqrt{s}}{\sqrt{s}} \simeq \frac{1}{4}\alpha\delta\alpha \frac{\Delta\delta\alpha}{\delta\alpha} \approx 1.3 \times 10^{-6} \frac{\Delta\delta\alpha}{\delta\alpha}.
$$

FCC Week, Brussels
25 June 2019

• $\Delta\delta\alpha/\delta\alpha$ = $\pm 100\% \Rightarrow \Delta\sqrt{s}$ = ∓ 120 keV (with BPMs); $\Delta\delta\alpha/\delta\alpha$ = $\pm 10\% \Rightarrow \Delta\sqrt{s}$ = ∓ 12 keV ;

Patrick Janot

5th FCC Physics Workshop, 09/02/2022 A. Andreazza - DMAPS for large area FCC trackers 29

4

Extrapolation to $N^{\pm} = 0$

Energy kicks δE^{\pm} directly proportional to opposite bunch population N^{\mp} \Box

UNIVERSITÀ

Also increases when opposite bunch length decreases (charge density increases)

Treated as systematic uncertainty in the following

Measurement of $\delta \alpha$

For equal e^+ and e^- bunch populations, $\delta\alpha$ is proportional to the common δE : \Box

$$
\delta \alpha = \frac{1}{\tan \alpha/_{2}} \left(\frac{\delta E_{+}}{E_{+}} + \frac{\delta E_{-}}{E_{-}} \right)
$$

- Therefore, $\delta \alpha$ follows the same power law as δE :
- The bunch population N_{part} is in turn related to the luminosity: ٠
- Leading to the remarkable power law:

$$
\delta \alpha \propto \frac{\mathcal{L}^{1/2}}{\sigma_{\sqrt{s}}^{1/6}}.
$$

It turns out that the beam crossing angle, the luminosity, and the centre-of mass energy spread can be \bullet measured altogether with $\mu^+\mu^-(\gamma)$ events [see slide 10]

 $\delta \alpha \propto \frac{N_{\rm part}}{\sigma_{\sqrt{s}}^{2/3}}$, with $\sigma_{\sqrt{s}} = \sigma_{\delta}^+ \oplus \sigma_{\delta}^-$

 $\mathcal{L} \propto \frac{N_{\rm part}^2}{\sigma_z} \Leftrightarrow \mathcal{L} \propto \frac{N_{\rm part}^2}{\sigma_z}.$

 \bullet Linear fit of a vs L^{1/2}/σ_{√s}^{1/6} will give in turn the values of δα and α₀

 \blacktriangle

Measurement with $\mu^+\mu^-(\gamma)$ events

From total energy-momentum conservation \Box

In the transverse plane $[p_{xI} p_{yI} E]$: see slide 3

$$
\alpha = 2 \arcsin \left[\frac{\sin \left(\varphi^{-} - \varphi^{+} \right) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-} - \sin \varphi^{+} \sin \theta^{+}} \right]
$$

One million dimuon events

One million dimuon events

 Ω

Longitudinal Boost, x

10

- In the longitudinal direction $[p_{7}$, E] : see my presentation in Amsterdam and the Energy Calibration paper ٠
	- Longitudinal boost distribution $\sim \sqrt{s}$ spread due to $\sigma_{\rm A}$

$$
x_{\gamma} = -\frac{x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-}}{\cos(\alpha/2) + |x_{+} \cos \theta^{+} + x_{-} \cos \theta^{-}|},
$$

with $x_{\pm} = \frac{\mp \sin \theta \pm \sin \varphi}{\sin \theta + \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}}.$

Luminosity directly proportional to N_{uu}

$$
\frac{\Delta \sigma_{\sqrt{s}}}{\sigma_{\sqrt{s}}} = \frac{1}{\sqrt{N_{\mu\mu}}}
$$
\n
$$
\frac{\Delta \mathcal{L}}{\sigma} = \frac{1}{\sqrt{N_{\mu\nu}}}
$$

L

Spread (no BS Spread (BS) $\sigma_{\text{max}} = 0.1$ mrad With ISR

Patrick Janot

FCC Week, Brussels
25 June 2019

UNIVERSITÀ DEGLI STUDI MILANO

Measurements during the filling period (Z pole)

Measure α , $\sigma_{\sqrt{s}}$ and N_{uu} for 11 steps of 40 seconds at the Z pole \Box

Well within the requirements, negligible w.r.t. to the beam energy uncertainty (50 keV) \Rightarrow

FCC Week, Brussels
25 June 2019

11

UNIVERSITÀ DEGLI STUD

Si tracker - Mechanics

- Local supports needs original solutions for the internal tracker (lightweight) and the wrapper (long-term stability)
- Just a couple of examples:
	- ALICE like staves, but built with subtractive technology
	- Stavelets with ATLASPIX3 modules as option for the Si Wrapper
- Different cooling options available
	- pipes materiale:
		- Titanium, steel, carbon, microchannel
	- $CO₂$ or water cooling
	- alternative cooling of edge supports for the vertex (à la Belle II)

