

Hadronization corrections in event shapes

Silvia Ferrario Ravasio

University of Oxford

FCC physics workshop, Liverpool (remote), 9th February 2022

Based on

 "On linear power corrections in certain collider observables", JHEP 01 (2022), 093, F. Caola, S.F.R., G. Limatola, K. Melnikov, P. Nason
 "Linear power corrections to e⁺e⁻ shape variables in the 3-jet region", to appear soon F. Caola, S.F.R., G. Limatola, K. Melnikov, P. Nason, M. A. Ozcelik

Silvia Ferrario Ravasio — February 9th, 2022 H

Hadronization corrections in event shapes

A typical FCC-ee event

Ingredients to describe a lepton collision

- Hard process (Q ~ 100 GeV): fixed order expansion in the strong coupling α_s(Q)
- multiple soft and/or collinear emissions, whose contribution is logarithmically enhanced L = ln Q/k_⊥, Q > k_⊥ > Λ, with Λ ~l GeV. Tools: analytic resummation (more accurate) or parton shower algorithms (more flexible)
- <u>Hadronization corrections</u>: phenomenological models (Lund or cluster) from MC event generators, or analytic models

Hadronization models for shape observables (I)

- State-of the art most precise calculations (NNLO, NNLL, N³LL, ...) are not interfaced to parton showers.
- This is the case for for **Event shapes**, which characterize the geometry of a collision.
- Event shapes are among the most precise fits to e⁺e⁻ hadronic final-state data and are use to perform precise measurements of α_s.
 - \Rightarrow per-mil targetted precision at FCC-ee

 \bullet Analytic models: shift the peturbative prediction by a constant amount $\propto 1/Q$

$$\Sigma(O) \to \Sigma(O - \mathcal{N} \Delta O)$$

universal Independent of $O(\Phi)$

We need to control linear NP corrections if we want percent or permille precision at $Q \approx 100$ GeV!

Hadronization models for shape observables (II)

- Using an **analytic model** for the hadronization $\sum^{\text{full}}(O) = \sum^{\text{pert}}(O \mathcal{N}\Delta_O; \alpha_s)$ possibility to fit a **non-perturbative parameter** and the **perturbative coupling** in a **single, consistent framework**
- $\bullet\,$ Unfortunately the determinations are several std away from the world average 0.1179 ± 0.0010

 $\alpha_s = 0.1135 \pm 0.0010$ thrust, [Abbate et al., 2010] $\alpha_s = 0.1123 \pm 0.0015$ C - parameter, [Hoang et. al, 2015]

- Hadronizaton from MC is tuned on less accurate parton showers, depends on the shower cutoff but leads to better results!!
- Analytic hadronization models are derived only for events with two collimated jets.

Analytic models suited for generic final states are required. Besides the impact on α_s from LEP or FCC-ee data, this is the simplest context to investigate the effectiveness of pQCD and the need for power corrections in a general way, leading possibly to important implications for LHC and FCC-hh.

• FCC-ee will allow for clean **non-perturbative QCD studies** and give us a handle on quark and **gluon fragmentation** (see Grojean's talk!); many hadronic observables ($H \rightarrow b\bar{b}$, $H \rightarrow gg$), which requires hadronization corrections, are aimed to be measured at (sub) percent precision!

C-parameter in the two- and three-jet limit

• N.P. corrections boil down to the calculation of the shift Δ_O , which corresponds to the average change in the observable induced by a soft emission:

$$\Delta_O = \int \frac{d\varphi}{2\pi} dy \left[O(p_1, \dots, p_n) - O(p'_1, \dots, p'_n, \mathbf{k}) \right] \propto \frac{1}{Q}$$

• The calculation of the shift Δ_0 depends on how we build the p'_i momenta if we are away from the 2 jet limit, and hence is **ambiguous**!, but the experimental data can also come from the **three-jet region**!

• Better analytic models can provide a better value for α_s ?

0.6

07

0.0

0.1

02

0.3

04

0.5

Large n_f limit

- We want to include the **exact kinematic dependence** in Δ_O .
- We rely on the $large-n_f$ limit to study the all-order behaviour of the theory and hence also its non-perturbative ambiguity (see backup for more details)
- The dominant contributions come from the insertions of fermionic bubbles into gluon lines

- Recent developments: linear power corrections are not present for observables inclusive with respect to QCD radiation [Caola, S.F.R., Limatola, Melnikov, Nason, '21]
- This helped us to find a prescription to solve the "mapping ambiguity" in the $\Delta_O(\Phi)$ definition entering the NP shift:

$$\Sigma(o) \to \Sigma(o - \mathcal{N}\langle \Delta_{\mathbf{O}}(\Phi) \rangle_{O(\Phi)=o}), \quad \Delta_{O}(\Phi) = \int \frac{d\varphi}{2\pi} dy \left[O(p_{1}, \dots, p_{n}) - O(p_{1}', \dots, p_{n}', k)\right]$$

 $\Delta_O(\Phi)$ must be computed using a **smooth mapping**

In the soft limit: $[p'_i = p_i + M_i(\{p\}) \cdot \mathbf{k}]_{\text{Longitudinal components}}$

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ → □ ● のへで

Results [Caola, S.F.R., Limatola, Melnikov, Nason, Ozcelik, preliminary]

Ratio between the exact non-perturbative shift and its value in the two jet limit O = 0 (*i.e.* its currend used value)

$$\alpha_s = 0.1123(15)$$

• for the **thrust**, NP corrections lie between 60% and 90% of what is currently used;

$$\alpha_s = 0.1135(10)$$

Extraction of the strong coupling constant

Our results for the *C*-parameter coincide with the **Catani-Seymour/PanLocal/PanGlobal** curve of LMS (Lusioni-Monni-Salam '20), *i.e.* the ones which employ a smooth phase space mapping! $\zeta(C)$

This curve is "quite similar" to the $\zeta_{b,3}$ curve considered in LMS, which leads $\alpha_s \sim 0.117$. Much closer to 0.118 than the flat (ζ_0) assumption ($\alpha_s \sim 0.112$).

- We have provided a recipe to esily evaluate NP corrections for a broad class event shapes in lepton collisions for any final state.
- For the **thrust** and *C*-**parameter** the "true" NP shift in the cumulative and differential distributions are heavily overestimated.
- This will potentially enable us to provide more accurate estimate of α_s from LEP and, especially, from the FCC-ee data.
- It will be interesting to see if **MC hadronization models** lead to the same NP shift once they act on a showered event. If not, one can use this **analytic insights** to improve them, possibly reducing the hadronization uncertainties affecting several collider measurements.

THANKS FOR THE ATTENTION!

How do we obtain an analytic model for hadronization?

• There are several sources of non-perturbative corrections, one of them lies in pQCD itself:

• Asymptotic series, which we truncate at the minimal term, which is the estimate of the ambiguity

$$\sqrt{\frac{\alpha_s(Q)\rho\pi}{b_0}}\Lambda^{\rho}$$

for $Q \sim 100 \text{GeV}$, only **linear** power corrections are worrysome.

• Since this ambiguity has to cancel with contributions arising from physics beyond perturbation theory, it can be used to estimate some **non-perturbative effects**.

Large-n_f limit

• Ambiguity related to the appearance of the Landau pole can be studied in the large number of flavour n_f limit, which allows to perform all-orders computations exactly.

• naive non-abelianization at the end of the computation (large b_0)

$$\Pi(k^{2} + i\eta, \mu^{2}) - \Pi_{ct} \rightarrow \alpha_{s}(\mu) \underbrace{\left(\frac{\Pi C_{A}}{12\pi} - \frac{n_{l}T_{R}}{3\pi}\right)}_{b_{0}} \left[\log\left(\frac{|k^{2}|}{\mu^{2}}\right) - i\pi\theta(k^{2}) - C\right]$$

Large- n_f approximation for "complex" collider processes

We obtained an expression that can be used for generic processes without gluons at LO to evaluate **any arbitrarily complex** infrared safe observable [S.F.R, Nason, Oleari '18] The large- n_f limit is a **rigorous** approach!

 α $r(\lambda)$ [Beneke '98]

$$O = \int d\Phi \frac{d\sigma(\Phi)}{d\Phi} O(\Phi) = O_{LO} - \frac{1}{\pi b_0} \int_0^\infty d\lambda \frac{d}{d\lambda} \left[\frac{T(\lambda)}{\alpha_s(\mu)} \right] \arctan\left[\pi b_0 \alpha_s(\lambda e^{-C/2}) \right]$$

$$T(\lambda) = \int d\Phi_b \frac{d\sigma_v^{(1)}(\Phi_b; \lambda)}{d\Phi_b} O(\Phi_b) + \int d\Phi_{g^*} \frac{d\sigma_r^{(1)}(\Phi_{g^*}; \lambda)}{d\Phi_{g^*}} O(\Phi_{g^*}) \right\} O_{NLO}(\lambda)$$

$$+ \frac{3\lambda^2}{2T_R\alpha_s} \int d\Phi_{g^*} d\Phi_{dec} \frac{d\sigma_{q\bar{q}}^{(2)}(\lambda, \Phi)}{d\Phi} \left[O(\Phi) - O(\Phi_{g^*}) \right] \right\} \Delta_{q\bar{q}} [Nason, Seymour '95]$$

Linear λ terms in $T(\lambda) \Leftrightarrow$ Linear power corrections

Non-perturbative approach for shape observables

• A broad class of shape observable is **suppressed in the collinear limit** (thust, C-parameter, heavy jet mass), *i.e.* an emission modifies the observable by an amount

$$\Delta O = \frac{p_{\perp}}{Q} \times f(y,\varphi) + \mathcal{O}\left(\frac{p_{\perp}^2}{Q^2}\right) \qquad \text{with } \lim_{y \to \pm \infty} \int \frac{d\varphi}{2\pi} f(y,\varphi) = 0$$

• Dokshitzer, Lucenti, Marchesini, Salam ('98) showed that the exact large- n_f result of Nason and Seymour '95 can be obtained multiplying the result for the emission of a **soft gluon** of fixed p_{\perp} = by the Milan factor

$$\frac{\partial \Sigma(O < o)}{\partial \lambda} = \frac{d\sigma}{do} \left[\mathcal{M} \frac{2C_F \alpha_s}{\pi} \int \frac{dp_\perp}{p_\perp} dy \frac{d\varphi}{2\pi} \Delta O \,\delta(p_\perp - \lambda) \right] = \frac{d\sigma}{do} \langle \Delta O \rangle \qquad \mathcal{M} = \frac{15\pi^2}{128} \text{ [Dasgupta, Magnea, Smye '99]}$$

- Although not rigorous, it is phenomenologically reasonable to include separately also the $g \to gg$ splitting, assuming the naive non-abelianization does not capture the fact that these splittings have a kinematic different from $g \to q\bar{q}$ $\mathcal{M} = \frac{3C_{4} \left[128\pi (1 + \log(2)) - 35\pi^{2} \right] - 15\pi^{2} n_{f}}{64(11C_{4} - 2n_{f})} \qquad [Smye, 'O1]$
- Non-perturbative corrections amount to a shift in the perturbative distribution [Dokshitzer, Webber '97]

$$O \to O - \langle \Delta O \rangle \left[\int_0^{\mu_l} dp_\perp \tilde{\alpha}_{\text{eff}}(p_\perp) - \alpha_s^{\text{CMW}}(Q) - \frac{\alpha_s(Q)^2 b_0}{2} \ln \frac{Q}{\mu_l} + \dots \right]$$

▲□▶▲@▶▲≣▶▲≣▶ = ● ● ●

C-parameter in the two- and three-jet limit

- The calculation of ΔO is ambiguous away from the two jet limit as it depends on the phase space parametrization: Φ_n → Φ_{n+1}(Φ_n, y, p_⊥, φ).
- The experimental data however can also come from the three-jet region!
- Usually calculates ΔO for $\mathbf{O} = \mathbf{0}$ and then assumes is constant across the whole spectrum;

• Better analytic models can provide a better value for α_s ?

Back to the large- n_f limit

• Since we cannot deal with gluons, to study NP corrections away from the two-jet limit we consider the process $Z \rightarrow q\bar{q}\gamma$.

• This process shares many similarities with $q\gamma \rightarrow Zq$, where we saw no power corrections affect the transverse momentum distribution of the Z. [S.F.R., Limatola, Nason, '20]

Caola, S.F.R., Limatola, Melnikov, Nason, '21

(I) The **linear mass dependence cancels** in an (abelian) theory with massive gluons, in the context of a single gluon emission or exchange, if the observable is **inclusive** with respect to QCD radiation.

(II) can we use this to simplify the calculation of NP corrections for shape observables?

Simplifying the calculation with a suitable phase space mapping

- To expose linear corrections for a **generic infrared-safe observable** in our simplified abelian theory, the real emission corrections can be computed using the **next-to-eikonal** approximation;
- For observables sensitive only to **soft radiation** (thrust, C-parameter, heavy jet mass ...)

$$R^{(\lambda)}(\Phi_{n+1}) \approx 4g_s^2 C_F B(\Phi_n) \times J_\mu J_\nu(-g^{\mu\nu}) \quad \text{with} \qquad \underbrace{J^\mu = \frac{p_l^\mu}{(p_l+k)^2} - \frac{p_2^\mu}{(p_2+k)^2}}_{\text{Eikonal current}}$$

$$V^{(\lambda)}(\Phi_{n+1}) \approx \int [dk] R^{(\lambda)}(\Phi_{n+1}) \qquad R^{(\lambda)}_{q\bar{q}}(\Phi_{n+2}) \approx B(\Phi_n) J_\mu J_\nu \frac{P^{\mu\nu}_{\text{split}}(\Phi_{\text{dec}})}{\text{split}} \quad \text{with} \ P^{\mu\nu}_{\text{split}} = \underbrace{\mathcal{Q}}_{\text{split}} \overset{\nu}{\Phi}_{\text{split}} \overset{\nu}{\Phi}_{s$$

and the way k_{\perp} is redistributed does not matter!

• We assume the same formulae for more complex final states, with C_F replaced by the proper color factor for each dipole

We can try to investigate the shift in the thrust and the C-parameter also away from Sudakov shoulders!

Caola, S.F.R., Limatola, Melnikov, Nason, Ozcelik, TO APPEAR SOON!

- We managed to obtain **analytic results** for the power corrections in the **thrust** and *C*-parameter distribution, which confirms our previous numeric findings
- We also re-obtained the **factorized form** for the shift in the cumulant in terms of the Milan factor, provided a **smooth phase space mapping** is employed

Notice that these results coincide with the Dipole/Antenna/PanGlobal results from [Luisoni, Monni, Salam '20]

Cumulant vs differential

$$\Sigma^{NP}(\lambda, O < o) = \left[\langle \Delta O \rangle \frac{d\sigma}{dO} \right]_{O=o}$$

NP shift in the C-parameter differential distribution

$$\sigma^{N\!P}(\lambda, O=o) = -\left[\frac{d}{dO}\left(\langle \Delta O \rangle \frac{d\sigma}{dO}\right)\right]_{O=o} = \left[\langle \Delta' O \rangle \frac{d^2\sigma}{dO^2}\right]_{O=o}$$

In the fiducial range used for α_s extractions:

• for the *C*-parameter, NP corrections roughly lie between 45% and 70% of what is currently used;

 $\alpha_s = 0.1123(15)$

• for the **thrust**, they lie between 60% and 90% of what is currently used.

 $\alpha_s = 0.1135(10)$

< ロト (同) (三) (三)

Summary and outlooks [extended]

- We have provided a recipe to esily evaluate **NP corrections** for a broad class event shapes in lepton collisions for **any final state**.
- The derivation of the abelian contribution is rigourous and directly follows from the $large-n_f$ limit.
- The full NP shift comprises also a non-abelian contribution, whose derivation is phenomenologically well-motivated (and it is analogous to the one related to the "full" Milan factor).
- We provide explicit formulae for the **thrust** and *C*-**parameter**, seeing that the "true" NP shift in the cumulative and differential distributions are heavily overestimated.
- This will potentially enable us to provide more accurate estimate of α_s from LEP and, especially, from the FCC-ee data.
- It will be interesting to see if **MC hadronization models** lead to the same NP shift once they act on a showered event. If not, one can use this **analytic insights** to improve them, possibly reducing the hadronization uncertainties affecting several collider measurements.
- TODO: include a dedicated treatment of **mass effects** (pole mass renormalons were specifically addressed in [S.F.R., Nason, Oleari '19].

3