

Hadronization corrections in event shapes

Silvia Ferrario Ravasio

University of Oxford

FCC physics workshop, Liverpool (remote), **9** th **February 2022**

Based on

"*On linear power corrections in certain collider observables*", JHEP **01** (2022), 093, **F. Caola, S.F.R., G. Limatola, K. Melnikov, P. Nason** "*Linear power corrections to e*⁺*e* [−] *shape variables in the 3-jet region*", to appear soon F. Caola, S.F.R., G. Limatola, K. Melnikov, P. Nason, **M. [A.](#page-0-0) [Oz](#page-1-0)[celi](#page-0-0)[k](#page-1-0)**

Silvia Ferrario Ravasio — February 9^{th} , 2022 [Hadronization corrections in event shapes 1/9](#page-18-0)

A typical FCC-ee event

Ingredients to describe a lepton collision

- Hard process $(Q \sim 100 \text{ GeV})$: fixed order expansion in the strong coupling $\alpha_s(Q)$
- \bullet multiple soft and/or collinear emissions, whose contribution is logarithmically enhanced $L = \ln Q/k_{\perp}$, $Q > k_{\perp} > \Lambda$, with Λ ∼1 GeV. Tools: **analytic resummation** (more accurate) or **parton shower algorithms** (more flexible)
- Hadronization corrections: **phenomenological models** (Lund or cluster) from **MC** event generators, or **analytic models**

Hadronization models for shape observables (I)

- State-of the art most precise calculations (NNLO, NNLL, N^3LL , ...) are not interfaced to parton showers.
- This is the case for for **Event shapes**, which characterize the geometry of a collision.
- Event shapes are among the most precise fits to $e^+e^$ hadronic final-state data and are use to perform **precise measurements of** α_s .
	- ⇒ per-mil targetted precision at FCC-ee
- **Non-perturbative linear power corrections** ∝ **1**/**Q** must be provided in order to fit the data!
- **Analytic models:** shift the peturbative prediction by a **constant amount** ∝ 1/*Q*

$$
\Sigma(O) \to \Sigma(\underset{\text{universal Independent of }O(\Phi)}{\underbrace{\mathcal{N}}}
$$

We need to control linear NP corrections if we want percent or permille precision at *Q* ≈**100 GeV!**

Hadronization models for shape observables (II)

- Using an analytic model for the hadronization $\left| \Sigma^{\text{full}}(O) = \Sigma^{\text{pert}}(O N \Delta_O; \alpha_s) \right|$ possibility to fit a **non-perturbative parameter** and the **perturbative coupling** in a **single, consistent framework**
- Unfortunately the determinations are several std away from the world average **0**.**1179** ± **0**.**0010**

 $\alpha_s = 0.1135 \pm 0.0010$ thrust, [Abbate et al., 2010] $\alpha_s = 0.1123 \pm 0.0015$ *C* − parameter, [Hoang et. al, 2015]

- Hadronizaton from **MC** is tuned on less accurate parton showers, depends on the shower cutoff but leads to better results!!
- Analytic hadronization models are derived only for events with **two collimated jets**.

Analytic models suited for generic final states are required. Besides the impact on α_s from LEP or FCC-ee data, this is the simplest context to investigate the effectiveness of pQCD and the need for power corrections in a general way, leading possibly to important implications for LHC and FCC-hh.

FCC-ee will allow for clean **non-perturbative QCD studies** and give us a handle on quark and **gluon fragmentation** (see Grojean's talk!); many hadronic observables ($H \to b\bar{b}$, $H \to gg$), which requires hadronization corrections, are aimed to be measured at (sub) percent precisi[on!](#page-2-0) 2990

C-parameter in the two- and three-jet limit

• N.P. corrections boil down to the calculation of the **shift** Δ _{*O*}, which corresponds to the average change in the observable induced by a **soft emission**:

$$
\Delta_O = \int \frac{d\varphi}{2\pi} dy \left[O(p_1, \ldots, p_n) - O(p'_1, \ldots, p'_n, k) \right] \propto \frac{1}{Q}
$$

The calculation of the shift Δ_O depends on how we build the p'_i momenta if we are away from the 2 jet limit, and hence is **ambiguous**!, but the experimental data can also come from the **three-jet region**!

Better analytic models can provide a better value for α_s ?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

4 **D** F

Large *n^f* limit

- We want to include the **exact kinematic dependence** in ∆*O*.
- We rely on the **large-***n^f* limit to study the all-order behaviour of the theory and hence also its non-perturbative ambiguity (see backup for more details)
- The dominant contributions come from the insertions of fermionic bubbles into gluon lines

= +

- Recent developments: linear power corrections are not present for observables inclusive with respect to QCD radiation [Caola, S.F.R., Limatola, Melnikov, Nason, '21]
- **This helped us to find a prescription to solve the "mapping ambiguity" in the** $\Delta_O(\Phi)$ definition entering the NP shift:

$$
\Sigma(o) \to \Sigma(o - \mathcal{N}\langle \Delta_{\mathbf{O}}(\Phi) \rangle_{O(\Phi) = o}), \quad \Delta_{\mathcal{O}}(\Phi) = \int \frac{d\varphi}{2\pi} dy \left[O(p_1, \ldots, p_n) - O(p'_1, \ldots, p'_n, k) \right]
$$

 Δ ^{Ω}(Φ) must be computed using a **smooth mapping**

In the soft limit: $[p'_i = p_i + M_i(\{\rho\}) \cdot k]$ _{Longitudinal components}

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ | 결 | 2000

Results [Caola, S.F.R., Limatola, Melnikov, Nason, Ozcelik, preliminary]

Ratio between the exact non-perturbative shift and its value in the two jet limit $O = 0$ (*i.e.* its currend used value)

$$
\alpha_s = 0.1123(15)
$$

o for the **thrust**, NP corrections lie between 60% and 90% of what is currently used;

$$
\alpha_s = 0.1135(10)
$$

Extraction of the strong coupling constant

Our results for the *C*-parameter coincide with the **Catani-Seymour/PanLocal/PanGlobal** curve of LMS (Lusioni-Monni-Salam '20), *i.e.* the ones which employ a smooth phase space mapping! ζ (C)

This curve is "quite similar" to the ζ_{b3} curve considered in LMS, which leads $\alpha_s \sim 0.117$. Much closer to 0.118 than the flat (ζ_0) assumption $(\alpha_s \sim 0.112)$.

 2990

∢ □ ▶ к 何 ▶ к ∃

- We have provided a recipe to esily evaluate **NP corrections** for a broad class event shapes in lepton collisions for **any final state**.
- For the **thrust** and *C*-parameter the "true" NP shift in the cumulative and differential distributions are heavily overestimated.
- This will potentially enable us to provide more accurate ϵ **estimate of** α_s from LEP and, especially, from the **FCC-ee** data.
- It will be interesting to see if **MC hadronization models** lead to the same NP shift once they act on a showered event. If not, one can use this **analytic insights** to improve them, possibly reducing the hadronization uncertainties affecting several collider measurements.

THANKS FOR THE ATTENTION!

How do we obtain an analytic model for hadronization?

There are several sources of non-perturbative corrections, one of them lies in pQCD itself:

Asymptotic series, which we truncate at the minimal term, which is the estimate of the ambiguity

$$
\sqrt{\frac{\alpha_s(Q)\rho\pi}{b_0}}\Lambda^{\rho}
$$

for *Q* ∼ 100GeV, only **linear** power corrections are worrysome.

• Since this ambiguity has to cancel with contributions arising from physics beyond perturbation theory, it can be used to estimate some **non-perturbative effects**. 4 E → E DAQ

Large-*n^f* limit

Ambiguity related to the appearance of the Landau pole can be studied in the large number of flavour n_f limit, which allows to perform all-orders computations exactly.

$$
\text{TOTO} \quad \text{TOTO} \quad = \text{TOTO} \quad + \text{TOTO} \quad \text{TOTO} \quad \text{OOTO} \quad \text{OOTO}
$$

• naive non-abelianization at the end of the computation (large b_0)

$$
\Pi(k^2 + i\eta, \mu^2) - \Pi_{\text{ct}} \rightarrow \alpha_{\text{s}}(\mu) \underbrace{\left(\frac{\text{HC}_\text{A}}{12\pi} - \frac{n_l T_{\text{R}}}{3\pi}\right)}_{b_0} \left[\log\left(\frac{|k^2|}{\mu^2}\right) - i\pi\theta(k^2) - C\right]
$$

 QQ

メイヨメ

4 **D** F

Large-*n^f* approximation for "complex" collider processes

We obtained an expression that can be used for generic processes without gluons at LO to evaluate **any arbitrarily complex** infrared safe observable [S.F.R, Nason, Oleari '18] The large-*n^f* limit is a **rigorous** approach!

 QQ

$$
O = \int d\Phi \frac{d\sigma(\Phi)}{d\Phi} O(\Phi) = O_{LO} - \frac{1}{\pi b_0} \int_0^\infty d\lambda \frac{d}{d\lambda} \left[\frac{T(\lambda)}{\alpha_s(\mu)} \right] \arctan \left[\pi b_0 \alpha_s(\lambda e^{-C/2}) \right]
$$

$$
T(\lambda) = \int d\Phi_b \frac{d\sigma_v^{(1)}(\Phi_b; \lambda)}{d\Phi_b} O(\Phi_b) + \int d\Phi_{g^*} \frac{d\sigma_r^{(1)}(\Phi_{g^*}; \lambda)}{d\Phi_{g^*}} O(\Phi_{g^*}) \right\} \frac{O_{NLO}(\lambda)}{O_{NLO}(\lambda)}
$$

+
$$
\frac{3\lambda^2}{2T_R\alpha_s} \int d\Phi_{g^*} d\Phi_{dec} \frac{d\sigma_{q\bar{q}}^{(2)}(\lambda, \Phi)}{d\Phi} \left[O(\Phi) - \underbrace{O(\Phi_{g^*})}_{q\bar{q} \to g^*} \right] \lambda_{q\bar{q}} \text{[Nason, Seymour '95]}
$$

Linear λ terms in $T(\lambda) \Leftrightarrow$ Linear power corrections

Non-perturbative approach for shape observables

A broad class of shape observable is **suppressed in the collinear limit** (thust, C-parameter, heavy jet mass), *i.e.* an emission modifies the observable by an amount

$$
\Delta O = \frac{p_{\perp}}{Q} \times f(y, \varphi) + \mathcal{O}\left(\frac{p_{\perp}^2}{Q^2}\right) \qquad \text{with } \lim_{y \to \pm \infty} \int \frac{d\varphi}{2\pi} f(y, \varphi) = 0
$$

Dokshitzer, Lucenti, Marchesini, Salam ('98) showed that the exact large-*n^f* result of Nason and Seymour '95 can be obtained multiplying the result for the emission of a soft gluon of fixed p_{\perp} = by the **Milan factor**

$$
\frac{\partial \Sigma(O < o)}{\partial \lambda} = \frac{d\sigma}{d\sigma} \left[\mathcal{M} \frac{2C_F \alpha_s}{\pi} \int \frac{d\rho_\perp}{\rho_\perp} dy \frac{d\varphi}{2\pi} \Delta O \,\delta(\rho_\perp - \lambda) \right] = \frac{d\sigma}{d\sigma} \langle \Delta O \rangle \quad \mathcal{M} = \frac{15\pi^2}{128} \text{ [Dasgupta, Magnea, Smye '99]}
$$

- Although not rigorous, it is phenomenologically reasonable to include separately also the $g \to gg$ splitting, assuming the naive non-abelianization does not capture the fact that these splittings have a kinematic different from $g \to q\bar{q}$ $\mathcal{M} = \frac{3C_A \left[128\pi (1 + \log(2)) - 35\pi^2\right] - 15\pi^2 n}{4(11C - 3\pi)}$ $\frac{6(7)}{64(\frac{11}{C_A} - 2n_f)}$ [Smye, '01]
- Non-perturbative corrections amount to a **shift** in the perturbative distribution [Dokshitzer, Webber '97]

$$
O \to O - \langle \Delta O \rangle \left[\int_0^{\mu_I} d p_\perp \tilde{\alpha}_{\rm eff}(\rho_\perp) - \alpha_s^{\rm CMW}(Q) - \frac{\alpha_s(Q)^2 b_0}{2} \ln \frac{Q}{\mu_I} + \ldots \right]
$$

K ロ > K @ > K ミ > K ミ > → ミ → K Q Q Q

C-parameter in the two- and three-jet limit

- The calculation of ∆*O* is **ambiguous** away from the two jet limit as it depends on the **phase space parametrization:** $\Phi_n \to \Phi_{n+1}(\Phi_n, y, \rho_\perp, \varphi)$.
- The experimental data however can also come from the three-jet region!
- Usually calculates ∆*O* for **O** = **0** and then assumes is constant across the whole spectrum;

• Better analytic models can provide a better value for α_s?

4. 0. 3.

Back to the large-*n^f* limit

Since we **cannot deal with gluons**, to study NP corrections away from the two-jet limit we consider the process $\mathbf{Z} \rightarrow \mathbf{q}\bar{\mathbf{q}}\gamma$.

• This process shares many similarities with $q\gamma \rightarrow Zq$, where we saw no power corrections affect the **transverse momentum distribution of the** *Z* . [S.F.R., Limatola, Nason, '20]

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \supseteq \mathcal{A}$

 Ω

Caola, S.F.R., Limatola, Melnikov, Nason, '21

(I) The **linear mass dependence cancels** in an (abelian) theory with massive gluons, in the context of a single gluon emission or exchange, if the observable is **inclusive** with respect to QCD radiation.

(II) can we use this to simplify the calculation of NP corrections for **shape observables**?

Simplifying the calculation with a suitable phase space mapping

- To expose linear corrections for a **generic infrared-safe observable** in our simplied abelian theory, the real emission corrections can be computed using the **next-to-eikonal** approximation;
- For observables sensitive only to **soft radiation** (thrust, C-parameter, heavy jet mass ...)

$$
R^{(\lambda)}(\Phi_{n+1}) \approx 4g_s^2 C_F B(\Phi_n) \times J_\mu J_\nu(-g^{\mu\nu}) \quad \text{with} \quad \underbrace{J^\mu = \frac{p_1^\mu}{(p_1 + k)^2} - \frac{p_2^\mu}{(p_2 + k)^2}}_{\text{Eikonal current}}.
$$
\n
$$
V^{(\lambda)}(\Phi_{n+1}) \approx \int [dk] R^{(\lambda)}(\Phi_{n+1}) \qquad R_{q\bar{q}}^{(\lambda)}(\Phi_{n+2}) \approx B(\Phi_n) J_\mu J_\nu \frac{P_{\text{split}}^{\mu\nu}(\Phi_{\text{dec}})}{\Phi_{\text{split}}} \quad \text{with} \quad P_{\text{split}}^{\mu\nu} = \text{QQ} \quad \text{with}
$$
\n
$$
k = \text{a}p_1 + \text{z}p_2 + k_\perp
$$
\n
$$
P_{1,2} \approx (1 \mp \text{a}_{1,2})p_{1,2}
$$

and the way k_{\perp} is redistributed does not matter!

• We assume the same formulae for more complex final states, with C_F replaced by the proper color factor for each dipole

We can try to investigate the shift in the thrust and the C-parameter also **away from Sudakov shoulders!** $E = \Omega Q$

Caola, S.F.R., Limatola, Melnikov, Nason, Ozcelik, TO APPEAR SOON!

- We managed to obtain **analytic results** for the power corrections in the **thrust** and *C***-parameter distribution**, which confirms our previous numeric findings
- We also re-obtained the **factorized form** for the shift in the cumulant in terms of the Milan factor, provided a **smooth phase space mapping** is employed

Notice that these results coincide with the Dipole/Antenna/PanGlobal results from [Luisoni, Monni, Salam '20] 2990

Cumulant vs differential

$$
\Sigma^{NP}(\lambda, O < o) = \left[\langle \Delta O \rangle \frac{d\sigma}{dO} \right]_{O = o}
$$

$$
\sigma^{NP}(\lambda, O = o) = -\left[\frac{d}{dO}\left(\langle \Delta O \rangle \frac{d\sigma}{dO}\right)\right]_{O = o} = \left[\langle \Delta' O \rangle \frac{d^2\sigma}{dO^2}\right]_{O = o}
$$

In the fiducial range used for α_s extractions:

for the *C***-parameter**, NP corrections roughly lie between 45% and 70% of what is currently used;

 $\alpha_s = 0.1123(15)$

• for the **thrust**, they lie between 60% and 90% of what is currently used.

 $\alpha_s = 0.1135(10)$

イロト イ押 トイヨ トイヨト

 2990

∍

0.00 0.05 0.10 0.15 0.20 0.25 0.30 $\tau = 1 - T$

 $0.3 +$ 0.4

Summary and outlooks [extended]

- We have provided a recipe to esily evaluate **NP corrections** for a broad class event shapes in lepton collisions for **any final state**.
- The derivation of the abelian contribution is rigourous and directly follows from the **large-***n^f* **limit**.
- The full NP shift comprises also a non-abelian contribution, whose derivation is phenomenologically well-motivated (and it is analogous to the one related to the "full" Milan factor).
- We provide explicit formulae for the **thrust** and *C***-parameter**, seeing that the "true" NP shift in the cumulative and differential distributions are heavily overestimated.
- This will potentially enable us to provide more accurate $\mathop{\bf estimate}\nolimits$ of α_s from LEP and, especially, from the **FCC-ee** data.
- It will be interesting to see if MC hadronization models lead to the same NP shift once they act on a showered event. If not, one can use this **analytic insights** to improve them, possibly reducing the hadronization uncertainties affecting several collider measurements.
- TODO: include a dedicated treatment of mass effects (pole mass renormalons were specifically addressed in [S.F.R., Nason, Oleari '19]. K ロ ▶ K @ ▶ K ミ X X 3 X X 는 X 이익()