The path to precision

A. Freitas University of Pittsburgh

Need for theory input

- Comparison of EWPOs with SM to probe new physics \rightarrow multi-loop corrections in full SM
- Extraction of EWPOs (pseudo-observables) from real observables → backgrounds (in full SM), QED/QCD, MC tools
- "Other" eletroweak parameters ("input" parameters) $\rightarrow m_t, \alpha_s$, etc. extracted from other processes

Z cross section and branching fractions

Z-pole asymmetries

Left-right asymmetry:

With polarized e^- beam:

$$A_{\mathsf{LR}} \equiv \frac{\sigma_{\mathsf{L}} - \sigma_{\mathsf{R}}}{\sigma_{\mathsf{L}} + \sigma_{\mathsf{R}}} = \mathcal{A}_{e}$$

Polarization asymmetry: Average τ pol. in $e^+e^- \rightarrow \tau^+\tau^-$: $\langle \mathcal{P}_\tau \rangle = -\mathcal{A}_\tau$

Z-pole asymmetries

Left-right asymmetry:

With polarized e^- beam:

$$A_{\mathsf{LR}} \equiv \frac{\sigma_{\mathsf{L}} - \sigma_{\mathsf{R}}}{\sigma_{\mathsf{L}} + \sigma_{\mathsf{R}}} = \mathcal{A}_{e}$$

Polarization asymmetry:

Average τ pol. in $e^+e^- \rightarrow \tau^+\tau^-$: $\langle \mathcal{P}_\tau \rangle = -\mathcal{A}_\tau$

Decay widths in terms of $\sin^2 \theta_{eff}^f$:

$$\Gamma_{ff} = C \left[F_V^f + F_A^f \right] = C \left[F_A^f (1 - 4|Q_f| \sin^2 \theta_{\text{eff}}^f)^2 + F_A^f \right]$$

Z lineshape

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

 $\sigma_{\gamma}, \sigma_{\gamma Z}, \sigma_{\text{box}}, \sigma_{\text{non-res}}$ known at NLO \rightarrow need consistent pole expansion framework \rightarrow higher orders needed for FCC-ee

Pole expansion

Expand amplitude for $e^+e^- \to f\bar{f}$ about complex pole $s_0 \equiv \overline{M}_Z^2 + i\overline{M}_Z\overline{\Gamma}_Z$:

$$\mathcal{M}_{ij} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad (i, j = V, A)$$

$$R_{ij} = \frac{Z_{ie}Z_{jf}}{1 + \Sigma_Z'} \bigg|_{s=s_0} + B_{\gamma Z, ij}^R + B_{\gamma Z, ij}^{RL} \ln(1 - \frac{s}{s_0})$$

$$S_{ij} = \left[\frac{Z_{ie}Z'_{jf} + Z'_{ie}Z_{jf}}{1 + \Sigma'_{Z}} - \frac{Z_{ie}Z_{jf}\Sigma''_{Z}}{2(1 + \Sigma'_{Z})^{2}} + \frac{G_{ie}G_{jf}}{s + \Sigma_{\gamma}} + B_{ij}\right]_{s=s_{0}} + B_{\gamma Z,ij}^{S} + B_{\gamma Z,ij}^{SL} \ln(1 - \frac{s}{s_{0}})$$

Pole expansion

Express $R_i j$ in terms of $\sin^2 \theta_{\text{eff}}^f$ and F_A^f :

$$R_{ij} = 4I_e^3 I_f^3 \sqrt{F_A^e} F_A^f \left[Q_i^e Q_j^f \left(1 + i r_{AA}^I - \frac{1}{2} (r_{AA}^I)^2 + \frac{1}{2} \delta \overline{X}_{(2)} \right) \right. \\ \left. + \left(Q_i^e I_{j,f} + Q_j^f I_{i,e} \right) (i - r_{AA}^I) - I_{i,e} I_{j,f} \right] \\ \left. + M_Z \Gamma_Z Z_{ie(0)} Z_{jf(0)} x_{ij}^I \right],$$

$$\begin{split} Q_V^f &= 1 - 4 |Q_f| \sin^2 \theta_{\text{eff}}^f, \qquad \qquad Q_A^f = 1 \\ I_{V,f} &= \frac{1}{(a_{f(0)}^Z)^2} \Big[a_{f(0)}^Z \ln Z_{Vf(1)} - v_{f(0)}^Z \ln Z_{Af(1)} \Big], \qquad I_{A,f} = 0 \\ \delta \overline{X}_{(2)} &= -(\lim \Sigma'_{Z(1)})^2 + 2 \overline{b}_{\gamma Z(1)}^R, \\ r_{ij}^I &= \frac{\lim Z_{ie(1)}}{Z_{ie(0)}} + \frac{\lim Z_{jf(1)}}{Z_{jf(0)}} - \lim \Sigma'_{Z(1)}, \\ x_{ij}^I &= \frac{\lim Z'_{ie(1)}}{Z_{ie(0)}} + \frac{\lim Z'_{jf(1)}}{Z_{jf(0)}} - \frac{1}{2} \ln \Sigma''_{Z(1)}, \end{split}$$

C++ library GRIFFIN (in preparation)

Chen, Freitas '22

Pole expansion

Expand amplitude for $e^+e^- \to f\bar{f}$ about complex pole $s_0 \equiv \overline{M}_Z^2 + i\overline{M}_Z\overline{\Gamma}_Z$:

$$\mathcal{M}_{ij} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad (i, j = V, A)$$

Current state of art: R @ NNLO + leading higher ordersS @ NLOS' @ (N)LO

For FCC-ee: (at least) one order more!

→ also matching to Monte-Carlo for QED/QCD ISR/FSR/IFI

$\underline{ee} \rightarrow ff$ above Z pole

With $\mathcal{O}(ab^{-1})$ at $\sqrt{s} \sim 161$ GeV and $\sqrt{s} \sim 240$ GeV:

 \rightarrow < 10⁻³ precision for $\sigma[e^+e^- \rightarrow f\bar{f}]$ (similar for A_{FB})

 \rightarrow strong sensitivity to new physics, e.g. Z' bosons or lepto-philic DM

→ NNLO corrections for full process $e^+e^- \rightarrow f\bar{f}$ needed (+ partial higher orders)

8/19

SMEFT operators

SMEFT: Gauge-invariant operators with SU(2) Higgs doublet

 $\mathcal{L} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \mathcal{O}(\Lambda^{-3}) \qquad (\Lambda \gg M_{\mathsf{Z}})$

Modified propagators:

e.g. $\mathcal{O}_{\phi 1} = (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi)$ $\mathcal{O}_{\mathsf{BW}} = \Phi^{\dagger} B_{\mu\nu} W^{\mu\nu} \Phi$

Modified Z-fermion couplings:

e.g. $O^f = i(\Phi^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} \Phi)(\bar{f}\gamma^{\mu}f) \quad f = e, \mu \tau, b, \dots$

4-fermion operators:

e.g.
$$O_{ff'}^{(1)} = (\bar{f}\gamma_{\mu}f)(\bar{f}'\gamma^{\mu}f') \quad f, f' = e, \mu \tau, b, ...$$

WW production

WW threshold

- High-precision measurement of M_W from $e^+e^- \rightarrow W^+W^-$ at threshold
- a) Corrections near threshold enhanced by $1/\beta$ and $\ln \beta$ $\beta \sim \sqrt{1 - 4 \frac{M_W^2 - iM_W\Gamma_W}{s}} \sim \sqrt{\Gamma_W/M_W}$

b) Non-resonant contributions are important

- Full $\mathcal{O}(\alpha)$ calculation of $e^+e^- \rightarrow 4f$ Denner, Dittmaier, Roth, Wieders '05
- EFT expansion in $\alpha \sim \Gamma_W/M_W \sim \beta^2$ Beneke, Falgari, Schwinn, Signer, Zanderighi '07
 - NLO corrections with NNLO Coulomb correction ($\propto 1/\beta^n$): $\delta_{th}M_W \sim 3 \text{ MeV}$ Actis, Beneke, Falgari, Schwinn '08
 - Adding NNLO corrections to $ee \rightarrow WW$ and $W \rightarrow f\bar{f}$ and NNLO ISR: $\delta_{th}M_W \lesssim 0.6 \text{ MeV}$

Comparison of EWPOs with theory

- To probe new physics, compare EWPOs with SM theory predictions
- Need to take theory error into account:

	Current exp.	Current th.	CEPC	FCC-ee
M_{W}^* [MeV]	15	4	1	0.5
Γ_Z [MeV]	2.3	0.4	0.025	0.025
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	25	5	2	1
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	66	10	4.3	6
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	16	4.5	<1	0.5

 * computed from G_{μ}

Theory calculations: Status

Many seminal works on 1-loop and leading 2-loop corrections Veltman, Passarino, Sirlin, Marciano, Bardin, Hollik, Riemann, Degrassi, Kniehl, ...

• Full 2-loop results for M_W , Z-pole observables

Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02 Onishchenko, Veretin '02 Awramik, Czakon, Freitas, Weiglein '04 Awramik, Czakon, Freitas '06 Hollik, Meier, Uccirati '05,07 Awramik, Czakon, Freitas, Kniehl '08 Freitas '14 Dubovyk, Freitas, Gluza, Riemann, Usovitsch '16,18

Approximate 3- and 4-loop results (enhanced by Y_t and/or N_f)

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05

Chetyrkin et al. '06 Boughezal, Czakon '06 Chen, Freitas '20

	FCC-ee	perturb. error with 3-loop [†]	Param. error*	main source
M_{W} [MeV]	0.5	1	0.6	$\Delta \alpha$
Γ_Z [MeV]	0.025	0.15	0.1	$lpha_{ extsf{S}}$
$R_b [10^{-5}]$	6	5	< 1	
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	0.5	1.5	1	$\Delta \alpha$

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$, leading 4-loop $(N_f^n = \text{at least } n \text{ closed fermion loops})$

Parametric inputs:

*FCC-ee: $\delta m_t = 50 \text{ MeV}, \ \delta \alpha_s = 0.0002, \ \delta M_Z = 0.5 \text{ MeV}, \ \delta(\Delta \alpha) = 3 \times 10^{-5}$

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR
- $m_{\rm t}$: Most precise measurement at LHC: $\delta m_{\rm t} \sim 0.3~{\rm GeV}$ PDG '20

Theoretical ambiguity in mass def.: Hoang, Plätzer, Samitz '18

 $m_{t}^{CB}(Q_{0}) - m_{t}^{\text{pole}}$ $= -\frac{2}{3}\alpha_{s}(Q_{0}) Q_{0} + \mathcal{O}(\alpha_{s}^{2}Q_{0})$ $\approx 0.5 \pm 0.2_{\text{pert.}} \pm 0.2_{\text{np.}}\text{GeV}$

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR
- $m_{
 m t}$: Most precise measurement at LHC: $\delta m_{
 m t} \sim 0.3~{
 m GeV}$

From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV:

Impact of theory modelling:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{exp}$$

$$\oplus [50 \text{ MeV}]_{QCD}$$

$$\oplus [10 \text{ MeV}]_{mass def.}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR
- $m_{
 m t}$: Most precise measurement at LHC: $\delta m_{
 m t} \sim 0.3~{
 m GeV}$

From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV:

Impact of theory modelling:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{exp}$$

$$\oplus [50 \text{ MeV}]_{QCD}$$

$$\oplus [10 \text{ MeV}]_{mass def.}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

future improvements:

 $[20 \text{ MeV}]_{exp}$ $\oplus [30 \text{ MeV}]_{QCD} \quad \text{(h.o. resummation)}$ $\oplus [10 \text{ MeV}]_{mass def.}$ $\oplus [15 \text{ MeV}]_{\alpha_{s}} \quad (\delta \alpha_{s} \lesssim 0.0002)$

 \lesssim 50 MeV

Strong coupling

• α_{s} : • Most precise determination using Lattice QCD: $\alpha_{s} = 0.1184 \pm 0.0006$ HPQCD '10 $\alpha_{s} = 0.1185 \pm 0.0008$ ALPHA '17 $\alpha_{s} = 0.1179 \pm 0.0015$ Takaura et al. '18 $\alpha_{s} = 0.1172 \pm 0.0011$ Zafeiropoulos et al. '19

- → Difficulty in evaluating systematics
- e^+e^- event shapes: $\alpha_s \sim 0.113...0.119$
 - \rightarrow Large non-pertubative power corrections
 - → Systematic uncertainties?

• Hadronic τ decays: $\alpha_s = 0.119 \pm 0.002$

PDG '18

 \rightarrow Non-perturbative uncertainties in OPE and from duality violation

Pich '14; Boito et al. '15,18

Strong coupling

• α_{s} :

• Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.120 \pm 0.003$ PDG '18

→ No (negligible) non-perturbative QCD effects FCC-ee: $\delta R_{\ell} \sim 0.001$ ⇒ $\delta \alpha_{s} < 0.0001$ Theory input: N³LO EW corr. + leading N⁴LO to keep $\delta_{th} R_{\ell} \lesssim \delta_{exp} R_{\ell}$

Caviat: R_{ℓ} could be affected by new physics

Strong coupling

• α_s:

• Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.120 \pm 0.003$ PDG '18

 \rightarrow No (negligible) non-perturbative QCD effects

FCC-ee: $\delta R_\ell \sim 0.001$

 $\Rightarrow \delta \alpha_{\rm S} < 0.0001$

Caviat: R_{ℓ} could be affected by new physics

•
$$R = \frac{\sigma[ee \rightarrow had.]}{\sigma[ee \rightarrow \mu\mu]}$$
 at lower \sqrt{s}
e.g. CLEO ($\sqrt{s} \sim 9$ GeV): $\alpha_{s} = 0.110 \pm 0.015$
Kühn, Steinhauser, Teubner '07

 \rightarrow dominated by *s*-channel photon, less room for new physics \rightarrow QCD still perturbative

naive scaling to 50 ab⁻¹ (BELLE-II): $\delta \alpha_{s} \sim 0.0001$

Calculational techniques

Analytical techniques:

- Computational intensive reduction to master integrals (MIs)
- Not fully understood function space of MIs
- Works best for problems with few (no) masses

Numerical techniques:

- Large computing time
- Numerical instabilites, in particule for diagrams with physical cuts
- Works best for problems with many masses

New techniques:

- Numerical reduction to MIs, numerical MIs via differential equations (DEs) Mandal, Zhao '18, Czakon, Niggetiedt '20
- DEs with respect to auxialiary parameter, $\frac{1}{k_i^2 m_i^2 + i\epsilon}$

Liu, Ma, Wang '17 Liu, Ma '18,21,22

Moriello '19, Hidding '20

 \rightarrow talks by J. Gluza, J. Usovitsch

Series solutions of DEs

Summary

- Electroweak precision tests require theory input for measurements of pseudo-observables (BRs, widths, masses, cross-sections, ...) and their SM/BSM interpretation
- Future e⁺e⁻ colliders (FCC-ee) improve precision by 1–2 orders of magnitude
- Uncertainties from perturbative and non-perturbative theory and input parameters require much work, but ongoing progress in calculational techniques
- Theory progress needed both for fixed-order loop corrections as well as MC tools

Backup slides

Z lineshape

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

In experimental analyses:

$$\sigma \sim \frac{1}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2}$$

$$\overline{M}_{Z} = M_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx M_{Z} - 34 \text{ MeV}$$
$$\overline{\Gamma}_{Z} = \Gamma_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx \Gamma_{Z} - 0.9 \text{ MeV}$$

Z decay

Factorization of massive and QED/QCD FSR:

$$\overline{\Gamma}_{f} \approx \frac{N_{c}\overline{M}_{Z}}{12\pi} \Big[\Big(\mathcal{R}_{V}^{f} |g_{V}^{f}|^{2} + \mathcal{R}_{A}^{f} |g_{A}^{f}|^{2} \Big) \frac{1}{1 + \operatorname{Re} \Sigma_{Z}^{\prime}} \Big]_{s = \overline{M}_{Z}^{2}}$$

 $\begin{array}{ll} \mathcal{R}^{f}_{V}, \ \mathcal{R}^{f}_{A} &: \mbox{Final-state QED/QCD radiation}; \\ \mbox{known to } \mathcal{O}(\alpha_{s}^{4}), \ \mathcal{O}(\alpha^{2}), \ \mathcal{O}(\alpha\alpha_{s}) & \mbox{Kataev '92} \\ & \mbox{Chetyrkin, Kühn, Kwiatkowski '96} \\ & \mbox{Baikov, Chetyrkin, Kühn, Rittinger '12} \end{array}$

 g_V^f , g_A^f , Σ_Z' : Electroweak corrections

Z decay

Factorization of massive and QED/QCD FSR:

$$\overline{\Gamma}_{f} \approx \frac{N_{c}\overline{M}_{Z}}{12\pi} \Big[\Big(\mathcal{R}_{V}^{f} |g_{V}^{f}|^{2} + \mathcal{R}_{A}^{f} |g_{A}^{f}|^{2} \Big) \frac{1}{1 + \operatorname{Re} \Sigma_{Z}^{\prime}} \Big]_{s = \overline{M}_{Z}^{2}}$$

Additional non-factorizable contributions, e.g.

 \rightarrow Known at $\mathcal{O}(\alpha \alpha_{s})$ Czarnecki, Kühn '96 Harlander, Seidensticker, Steinhauser '98

 \rightarrow Currently not known at $\mathcal{O}(\alpha^2)$ and beyond

- $\rightarrow \mathcal{O}(0.01\%)$ uncertainty on Γ_Z, σ_Z , maybe larger for A_b
- \rightarrow How to account for in MC simulations?

	Experiment	Theory error	Main source
M_{W}	$80.379\pm0.012~\text{MeV}$	4 MeV	$\alpha^3, \alpha^2 \alpha_s$
${\sf \Gamma}_Z$	$2495.2\pm2.3~{ m MeV}$	0.4 MeV	$\alpha^{3}, \alpha^{2} \alpha_{s}, \alpha \alpha_{s}^{2}$
R_ℓ	20.767 ± 0.025	0.005	$\alpha^3, \alpha^2 \alpha_s$
R_b	0.21629 ± 0.00066	0.0001	$\alpha^3, \alpha^2 \alpha_s$
$\sin^2 heta_{ ext{eff}}^\ell$	0.23153 ± 0.00016	$4.5 imes10^{-5}$	$\alpha^3, \alpha^2 \alpha_s$

Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods: Count prefactors (α , N_c , N_f , ...)
 - Extrapolation of perturbative series
 - Renormalization scale dependence
 - Renormalization scheme dependence

Goemetric perturbative series

$$\alpha_{\rm t} = \alpha m_{\rm t}^2$$

$$\mathcal{O}(\alpha^{3}) - \mathcal{O}(\alpha_{t}^{3}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha^{2}) \sim 0.26 \text{ MeV}$$

$$\mathcal{O}(\alpha^{2}\alpha_{s}) - \mathcal{O}(\alpha_{t}^{2}\alpha_{s}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.30 \text{ MeV}$$

$$\mathcal{O}(\alpha\alpha_{s}^{2}) - \mathcal{O}(\alpha_{t}\alpha_{s}^{2}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.23 \text{ MeV}$$

$$\mathcal{O}(\alpha\alpha_{s}^{3}) - \mathcal{O}(\alpha_{t}\alpha_{s}^{3}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}^{2}) \sim 0.035 \text{ MeV}$$

$$\mathcal{O}(lpha_{ t bos}^2)\sim\mathcal{O}(lpha_{ t bos})^2\sim 0.1~{ t MeV}$$

Parametric prefactors:
$$\mathcal{O}(\alpha_{bos}^2) \sim \Gamma_Z \alpha^2 \sim 0.1 \text{ MeV}$$

 $\mathcal{O}(\alpha \alpha_s^2) - \mathcal{O}(\alpha_t \alpha_s^2) \sim \frac{\alpha n_{lq}}{\pi} \alpha_s^2 \sim 0.29 \text{ MeV}$

Total: $\delta \Gamma_Z \approx 0.5 \text{ MeV}$