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Introduction

Asymmetries measured at the Z pole
We study the process e+e− → (Z)→ bb

Pseudo-observables, unfolded at the Z peak

forward-backward asymmetry Abb,0
FB = 3

4AeAb

f-b left-right asymmetry Abb,0
FB,LR = 3

4PeAb, Pe is the electron polarization

Ab =
2<e vbab

1 +
(
<e vbab

)2 = 1− 4|Qb|sin2 θb
eff

1− 4|Qb|sin2 θb
eff + 8Q2

b(sin2 θb
eff)2 (1)

Definition of the effective weak mixing angle

sin2 θb
eff = 1

4|Qb|

(
1−<evb

ab

)
(2)

vb and ab are effective vector coupling and axial-vector coupling of the Zbb
vertex
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Introduction

Vertex form factor
In the pole scheme, near the Z pole, the amplitude is written as

Ae
+e−→bb = R

s− s0
+ S + (s− s0)S′ + . . . , s0 = M

2
Z − iMZΓZ (3)

The Residue R of A[e+e−→bb] factorizes into initial- and final state
vertex form factors and Z-propagator corrections

V Zbb
µ = γµ[v̂b(s)− âb(s)γ5] (4)

The effective vector and axial-vector components can be projected via

v̂b(s) = 1
2(2−D)sTr[γµ/p1V

Zbb
µ /p2], âb(s) = 1

2(2−D)sTr[γ5γ
µ
/p1V

Zbb
µ /p2] (5)

D = 4− 2ε is the space-time dimension
p1,2 are the momenta of the external b-quarks and s = (p1 + p2)2

The hat in v̂b(s) and âb(s) denotes the Z − γ mixing [→ see Ayres
talk for more details]

4 / 20



Introduction

Historical time stamps for electroweak sin2 θb
eff

One-loop corrections to the sin2 θb
eff [A. Akhundov, D. Bardin, T. Riemann, Electroweak one

loop corrections to the decay of the neutral vector boson, Nucl. Phys. B276 (1986) 1.] [W. Beenakker, W. Hollik, The

width of the Z boson, Z. Phys. C40 (1988) 141.]

Two-loop electroweak corrections to the sin2 θb
eff [Awramik, M. Czakon, A. Freitas,

B. Kniehl, Two-loop electroweak fermionic corrections to sin2 θbeff , Nucl. Phys. B813 (2009) 174â187.] [ I. Dubovyk,

A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, The two-loop electroweak bosonic corrections to sin2 θbeff , Phys. Lett.

B762 (2016) 184â189.]

We should focus to deliver three-loop contributions faster than in a
30 years time frame.
The emergement of advanced tools helps us to achieve this goal to
compute Feynman integrals and amplitudes efficiently

5 / 20



Z-boson form factors at two-loop accuracy

Z-boson form factors at two-loop accuracy
[I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, Electroweak pseudo-observables and Z-boson form factors at two-loop

accuracy, JHEP 08 (2019) 113.]

Form fact. Born O(α) O(ααs) O(ααs)
non-fact.

O(αtα
2
s , αtα

3
s ,

α2
tαs, α

3
t )

O(N2
f
α2) O(Nfα2) O(α2

bos)

F `V [10−5] 39.07 −24.86 2.41 – 0.35 1.47 2.37 0.27
F `A [10−5] 3309.44 118.59 9.46 – 1.22 8.60 2.60 0.45
FνV,A [10−5] 3309.44 127.56 9.46 – 1.22 8.60 3.83 0.39
F
u,c
V

[10−5] 544.88 −44.80 7.29 −0.39 1.02 −1.67 3.25 0.33
F
u,c
A

[10−5] 3309.44 120.79 9.46 −0.98 1.22 8.60 3.27 0.44
F
d,s
V

[10−5] 1635.01 5.84 9.64 −0.80 1.32 0.71 3.45 0.37
F
d,s
A

[10−5] 3309.44 123.78 9.46 −1.14 1.22 8.60 3.11 0.42
F bV [10−5] 1635.01 −26.16 9.64 3.13 1.32 0.71 1.77 1.05
F bA [10−5] 3309.44 78.26 9.46 4.45 1.22 8.60 0.13 1.18

Table: Contributions of different perturbative orders to the Z vertex form factors.
A fixed value of MW has been used as input, instead of Gµ. Nn

f refers to
corrections with n closed fermions loops, whereas α2

bos denotes corrections
without closed fermions loops. Furthermore, αt = yt/(4π) where yt is the top
Yukawa coupling.
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Pseudo observables Motivation

Electroweak Precision Physics

Experiment Theory Main source

uncertainty

MW [MeV] 80385± 15 4 N2
fα

3, Nfα
2αs

sin2 θl
eff [10−5] 23153± 16 4.5 N2

fα
3, Nfα

2αs

ΓZ [MeV] 2495.2± 2.3 0.4 N2
fα

3, Nfα
2αs, αα2

s

σ0
had[pb] 41540± 37 6 N2

fα
3, Nfα

2αs

Rb = ΓbZ/Γhad
Z [10−5] 21629± 66 15 N2

fα
3, Nfα

2αs

The number of Z-bonos collected at LEP is 1.7× 107

Many pseudo observables are determined with high precision
Present theoretical predictions (at least one order of magnitude
better) are accurate enough to fullfill experimental demands
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Pseudo observables Motivation

Overview Experiment Future

Experiment uncertainty Theory uncertainty

ILC CEPC FCC-ee Current Future

MW [MeV] 3-4 3 1 4 1

sin2 θl
eff [10−5] 1 2.3 0.6 4.5 1.5

ΓZ [MeV] 0.8 0.5 0.1 0.4 0.2

Rb[10−5] 14 17 6 15 7

The concepts for the new experiments will have new demands to the
theoreticle predictions
The projection to the theory errors in the future assumes that the
tower of missing corrections αα2

s , N2
fα

3, Nfα
2αs will become

available
Theoretical computations are universal
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Two-loop Feynman vertex integral

State of the art 6 years ago

0

0

s

mt

mt

MW

In physical regions (s,M2
W ,m

2
t )=(1,( 401925

4559382)2, (433000
227969)2)

Arbitrary kinematic point, but with restricted accuracy
A complementary mixture of Mellin-Barnes integral and sector
decomposition methods [→ see Janusz’s talk]

soft13d=4−2ε[1, 1, 1, 1, 1, 1, 0] = 0.93453624 + 0.54089756 i (6)
+(0.1901137256− 0.6583157563 i)/ε− 0.2095484134808370/ε2
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Two-loop Feynman vertex integral

The state of the art - automatic computations

With the program AMFlow [Liu, Xiao and Ma, Yan-Qing, AMFlow: a Mathematica Package for

Feynman integrals computation via Auxiliary Mass Flow,arXiv:2201.11669] and the program Caesar

soft13d=4−2ε[1, 1, 1, 1, 1, 1, 0]
= (0.934536247523241 + 0.540897568924577 i)
+(0.190113725674667− 0.658315756362794 i)1/ε
−0.2095484134808370/ε2 (7)

Arbitrary kinematic point but with arbitrary accuracy
AMFlow is based on auxiliary mass flow introduced in [arXiv:1711.09572,

arXiv:1912.09294, arXiv:2107.01864]

Caesar is a program, which is a combination of different set of tools
based on [arXiv:2201.02576]
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Caesar: blueprint for numerical evaluation of Feynman integrals

Caesar: blueprint for numerical evaluation of Feynman
integrals

Developers team: Martijn Hidding and me.
Basic idea: Caesar has an interface to Kira [Jonas Klappert, Fabian Lange, Philipp

Maierhöfer, J.U], Reduze 2 [Von Manteuffel, Studerus, 2012], (pySecDec [Borowka et al., 2018] or
AMFlow [Xiao Liu, Yan-Qing Ma, 2022]) and DiffExp [Martijn Hidding, 2021].
Kira - the backbone / major bottleneck of the Caesar project - solves
linear system of equations
Reduze 2 - finds candidates for a finite basis of master integrals
pySecDec - computes these master integrals in Euclidean regions -
boundary terms for the system of differential equations
AMFlow - computes these master integrals in physical regions -
boundary terms for the system of differential equations
DiffExp - transports the boundary terms to an arbitrary physical point
Error estimate: repeat the chain of tools for different initial boundary
terms
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Caesar: blueprint for numerical evaluation of Feynman integrals

The state of the art - automatic computations
With Caesar[AMFlow] [Martijn Hidding, J.U., in preparation]
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real and imaginary part of

soft13D4[1, 1, 1, 1, 1, 1, 0]

Arbitrary line in the space of all mass scales with arbitrary accuracy
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Caesar: blueprint for numerical evaluation of Feynman integrals

The state of the art - automatic computations
With Caesar[AMFlow] [Martijn Hidding, J.U., in preparation]
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Caesar: blueprint for numerical evaluation of Feynman integrals

The state of the art - automatic computations
With Caesar[AMFlow] [Martijn Hidding,J.U., in preparation]
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soft13D4[1, 1, 1, 1, 1, 1, 0]

Arbitrary line in the space of all mass scales with arbitrary accuracy
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Three-loop Feynman vertex integral

The state of the art - automatic computations

In physical regions (s,M2
W ,m

2
t )=(1,( 401925

4559382)2, (433000
227969)2)

-> v3t181d=4−2ε[1, 1, 1, 1, 1, 1, 1, 1, 1, -3, 0, 0] =
2.00000000000

ε3

+9.8700393436 +18.8495559213 i
ε2

−26.507336797−41.196707081 i
ε

+(2.29574523 + 201.06880207 i) +O (ε)
Fully automated with Caesar[pySecDec]
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Three-loop Feynman vertex integral

The state of the art - automatic computations
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Fully automated with Caesar[AMFlow]
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Three-loop Feynman vertex integral

The state of the art - automatic computations
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Three-loop Feynman vertex integral

The state of the art - automatic computations
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Three-loop Feynman vertex integral

The state of the art - automatic computations
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Summary

Outlook

The first electroweak three-loop physics goals are in reach
Important is the knowledge transfer and to get people motivated to
engineer other methods for practical applications
Without spending significant effort on simplification of the basis, we
can numerically solve the differential equations of non-trivial 3-loop
Feynman integrals.
We find that the precision of the boundary conditions in the
Euclidean region carries over to the physical region.
The process is fully automated.
In this talk presented fully automated methods AMFlow and Caesar
have one common bottleneck – integration-by-parts reductions
-> There are new methods already in the making to boost the IBP
reductions
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