Electroweak pseudo-observables and Z-boson form factors at two-loop accuracy

in collaboration with:

Ayres Freitas, Janusz Gluza, Krzysztof Grzanka, Martijn Hidding

Johann Usovitsch

09. February 2022

Outline

- Introduction
- 2 Z-boson form factors at two-loop accuracy
- Pseudo observables
- Two-loop Feynman vertex integral
- **©** Caesar: blueprint for numerical evaluation of Feynman integrals
- 6 Three-loop Feynman vertex integral
- Summary

Asymmetries measured at the Z pole

We study the process $e^+e^- \to (Z) \to b\overline{b}$

Pseudo-observables, unfolded at the Z peak

forward-backward asymmetry $A_{\rm FB}^{{
m b\overline{b}},0}=\frac{3}{4}A_{
m e}A_{
m b}$ f-b left-right asymmetry $A_{\rm FB,LR}^{{
m b\overline{b}},0}=\frac{3}{4}P_{
m e}A_{
m b}$, $P_{
m e}$ is the electron polarization

$$A_{b} = \frac{2\Re e \frac{v_{b}}{a_{b}}}{1 + \left(\Re e \frac{v_{b}}{a_{b}}\right)^{2}} = \frac{1 - 4|Q_{b}|\sin^{2}\theta_{\text{eff}}^{b}}{1 - 4|Q_{b}|\sin^{2}\theta_{\text{eff}}^{b} + 8Q_{b}^{2}(\sin^{2}\theta_{\text{eff}}^{b})^{2}}$$
(1)

Definition of the effective weak mixing angle

$$\sin^2 \theta_{\text{eff}}^{\text{b}} = \frac{1}{4|Q_b|} \left(1 - \Re e \frac{v_b}{a_b} \right) \tag{2}$$

 v_b and a_b are effective vector coupling and axial-vector coupling of the $Zb\overline{b}$ vertex

Vertex form factor

ullet In the pole scheme, near the Z pole, the amplitude is written as

$$\mathcal{A}^{e^+e^- \to b\overline{b}} = \frac{R}{s - s_0} + S + (s - s_0)S' + \dots, \quad s_0 = \overline{M}_Z^2 - i\overline{M}_Z\overline{\Gamma}_Z$$
 (3)

• The Residue R of $\mathcal{A}^{[e^+e^-\to b\bar{b}]}$ factorizes into initial- and final state vertex form factors and Z-propagator corrections

$$V_{\mu}^{Zb\overline{b}} = \gamma_{\mu}[\hat{v}_b(s) - \hat{a}_b(s)\gamma_5] \tag{4}$$

• The effective vector and axial-vector components can be projected via

$$\hat{v}_b(s) = \frac{1}{2(2-D)s} \text{Tr}[\gamma^{\mu} \not\!\!p_1 V_{\mu}^{Zb\bar{b}} \not\!\!p_2], \quad \hat{a}_b(s) = \frac{1}{2(2-D)s} \text{Tr}[\gamma_5 \gamma^{\mu} \not\!\!p_1 V_{\mu}^{Zb\bar{b}} \not\!\!p_2]$$
(5)

- $D=4-2\epsilon$ is the space-time dimension
- ullet $p_{1,2}$ are the momenta of the external b-quarks and $s=(p_1+p_2)^2$
- The hat in $\hat{v}_b(s)$ and $\hat{a}_b(s)$ denotes the $Z-\gamma$ mixing [\to see Ayres talk for more details]

Historical time stamps for electroweak $\sin^2 \theta_{ m eff}^{ m b}$

- One-loop corrections to the $\sin^2\theta_{\rm eff}^{\rm b}$ [A. Akhundov, D. Bardin, T. Riemann, Electroweak one loop corrections to the decay of the neutral vector boson, Nucl. Phys. B276 (1986) 1.] [W. Beenakker, W. Hollik, The width of the Z boson, Z. Phys. C40 (1988) 141.]
- Two-loop electroweak corrections to the $\sin^2\theta_{\rm eff}^{\rm b}$ [Awramik, M. Czakon, A. Freitas, B. Kniehl, Two-loop electroweak fermionic corrections to $\sin^2\theta_{\rm eff}^{\rm b}$, Nucl. Phys. B813 (2009) 174â187.] [I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, The two-loop electroweak bosonic corrections to $\sin^2\theta_{\rm eff}^{\rm b}$, Phys. Lett. B762 (2016) 184â189.]
- We should focus to deliver three-loop contributions faster than in a 30 years time frame.
- The emergement of advanced tools helps us to achieve this goal to compute Feynman integrals and amplitudes efficiently

Z-boson form factors at two-loop accuracy

[I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, Electroweak pseudo-observables and Z-boson form factors at two-loop accuracy, JHEP 08 (2019) 113.]

Form fact.	Born	$\mathcal{O}(lpha)$	$\mathcal{O}(lphalpha_{\mathrm{s}})$	$\mathcal{O}(lphalpha_{\mathrm{s}})$ non-fact.	$\mathcal{O}(\alpha_{\rm t}\alpha_{\rm s}^2,\alpha_{\rm t}\alpha_{\rm s}^3,\alpha_{\rm t}^3,\alpha_{\rm t}^3)$	$\mathcal{O}(N_f^2 \alpha^2)$	$\mathcal{O}(N_f \alpha^2)$	$\mathcal{O}(lpha_{ m bos}^2)$
F_V^{ℓ} [10 ⁻⁵]	39.07	-24.86	2.41	_	0.35	1.47	2.37	0.27
F_A^{ℓ} [10 ⁻⁵]	3309.44	118.59	9.46	_	1.22	8.60	2.60	0.45
$F_{V,A}^{\nu}$ [10 ⁻⁵]	3309.44	127.56	9.46	_	1.22	8.60	3.83	0.39
$F_V^{u,c}$ [10 ⁻⁵]	544.88	-44.80	7.29	-0.39	1.02	-1.67	3.25	0.33
$F_A^{u,c}$ [10 ⁻⁵]	3309.44	120.79	9.46	-0.98	1.22	8.60	3.27	0.44
$F_V^{d,s}$ [10 ⁻⁵]	1635.01	5.84	9.64	-0.80	1.32	0.71	3.45	0.37
$F_A^{d,s}$ [10 ⁻⁵]	3309.44	123.78	9.46	-1.14	1.22	8.60	3.11	0.42
$F_V^A [10^{-5}]$	1635.01	-26.16	9.64	3.13	1.32	0.71	1.77	1.05
$F_A^{\dot{b}} [10^{-5}]$	3309.44	78.26	9.46	4.45	1.22	8.60	0.13	1.18

Table: Contributions of different perturbative orders to the Z vertex form factors. A fixed value of $M_{\rm W}$ has been used as input, instead of G_{μ} . N_f^n refers to corrections with n closed fermions loops, whereas $\alpha_{\rm bos}^2$ denotes corrections without closed fermions loops. Furthermore, $\alpha_{\rm t} = y_{\rm t}/(4\pi)$ where $y_{\rm t}$ is the top Yukawa coupling.

Electroweak Precision Physics

	Experiment	Theory	Main source
		uncertainty	
$M_W[{ m MeV}]$	80385 ± 15	4	$N_f^2 lpha^3$, $N_f lpha^2 lpha_{ m s}$
$\sin^2\theta_{\rm eff}^{\rm l}[10^{-5}]$	23153 ± 16	4.5	$N_f^2 lpha^3$, $N_f lpha^2 lpha_{ m s}$
$\Gamma_Z[{ m MeV}]$	2495.2 ± 2.3	0.4	$N_f^2 lpha^3$, $N_f lpha^2 lpha_{ m s}$, $lpha lpha_{ m s}^2$
$\sigma_{ m had}^0[m pb]$	41540 ± 37	6	$N_f^2 lpha^3$, $N_f lpha^2 lpha_{ m s}$
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	21629 ± 66	15	$N_f^2 lpha^3$, $N_f lpha^2 lpha_{ m s}$

- The number of Z-bonos collected at LEP is 1.7×10^7
- Many pseudo observables are determined with high precision
- Present theoretical predictions (at least one order of magnitude better) are accurate enough to fullfill experimental demands

Overview Experiment Future

	Experiment uncertainty			Theory uncertainty		
	ILC	CEPC	FCC-ee	Current	Future	
$M_W[{ m MeV}]$	3-4	3	1	4	1	
$\sin^2\theta_{\rm eff}^{\rm l}[10^{-5}]$	1	2.3	0.6	4.5	1.5	
$\Gamma_Z[{ m MeV}]$	0.8	0.5	0.1	0.4	0.2	
$R_b[10^{-5}]$	14	17	6	15	7	

- The concepts for the new experiments will have new demands to the theoreticle predictions
- The projection to the theory errors in the future assumes that **the** tower of missing corrections $\alpha\alpha_{\rm s}^2$, $N_f^2\alpha^3$, $N_f\alpha^2\alpha_{\rm s}$ will become available
- Theoretical computations are universal

State of the art 6 years ago

- In physical regions $(s, M_W^2, m_t^2) = (1, (\frac{401925}{4559382})^2, (\frac{433000}{227969})^2)$
- Arbitrary kinematic point, but with restricted accuracy
- ullet A complementary mixture of Mellin-Barnes integral and sector decomposition methods [o see Janusz's talk]

$$soft13^{d=4-2\epsilon}[1,1,1,1,1,1,0] = 0.93453624 + 0.54089756 i \quad (6)$$
$$+(0.1901137256 - 0.6583157563 i)/\epsilon - 0.2095484134808370/\epsilon^{2}$$

• With the program AMFlow [Liu, Xiao and Ma, Yan-Qing, AMFlow: a Mathematica Package for

Feynman integrals computation via Auxiliary Mass Flow,arXiv:2201.11669] and the program Caesar

$$soft13^{d=4-2\epsilon}[1,1,1,1,1,1,0]$$

$$= (0.934536247523241 + 0.540897568924577 i)$$

$$+ (0.190113725674667 - 0.658315756362794 i)1/\epsilon$$

$$-0.2095484134808370/\epsilon^{2}$$
(7)

- Arbitrary kinematic point but with arbitrary accuracy
- AMFlow is based on auxiliary mass flow introduced in [arXiv:1711.09572, arXiv:1912.09294, arXiv:2107.01864]
- Caesar is a program, which is a combination of different set of tools based on [arXiv:2201.02576]

Caesar: blueprint for numerical evaluation of Feynman integrals

- Developers team: Martijn Hidding and me.
- Basic idea: Caesar has an interface to Kira [Jonas Klappert, Fabian Lange, Philipp Maierhöfer, J.U], Reduze 2 [Von Manteuffel, Studerus, 2012], (pySecDec [Borowka et al., 2018] Or AMFlow [Xiao Liu, Yan-Qing Ma, 2022]) and DiffExp [Martijn Hidding, 2021].
- Kira the backbone / major bottleneck of the Caesar project solves linear system of equations
- Reduze 2 finds candidates for a finite basis of master integrals
- pySecDec computes these master integrals in Euclidean regions boundary terms for the system of differential equations
- AMFlow computes these master integrals in physical regions boundary terms for the system of differential equations
- DiffExp transports the boundary terms to an arbitrary physical point
- Error estimate: repeat the chain of tools for different initial boundary terms

• With Caesar[AMFlow] [Martijn Hidding, J.U., in preparation]

• Arbitrary line in the space of all mass scales with arbitrary accuracy

• With Caesar[AMFlow] [Martijn Hidding, J.U., in preparation]

• Arbitrary line in the space of all mass scales with arbitrary accuracy

• With Caesar[AMFlow] [Martijn Hidding, J.U., in preparation]

• Arbitrary line in the space of all mass scales with arbitrary accuracy

Fully automated with Caesar[pySecDec]

• Fully automated with Caesar[AMFlow]

• Fully automated with Caesar[AMFlow]

Fully automated with Caesar[AMFlow]

• Fully automated with Caesar[AMFlow]

Outlook

- The first electroweak three-loop physics goals are in reach
- Important is the knowledge transfer and to get people motivated to engineer other methods for practical applications
- Without spending significant effort on simplification of the basis, we can numerically solve the differential equations of non-trivial 3-loop Feynman integrals.
- We find that the precision of the boundary conditions in the Euclidean region carries over to the physical region.
- The process is fully automated.
- In this talk presented fully automated methods AMFlow and Caesar have one common bottleneck – integration-by-parts reductions
 There are new methods already in the making to boost the IBP reductions