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� Cross sections stemming from e+e− collisions are plagued by

large logs that must be resummed

� One way to do that is by means of collinear factorisation;

another, with YFS

� If you run on the peak of a narrow resonance, YFS is probably the way

to go. In all of the other cases, I’d employ collinear factorisation



◮ There is no precision physics without the ability of assessing

uncertainties

The problem with collinear factorisation pre-2019:

◮ Collinear formulae used thus far are leading-log accurate:

computation of uncertainties is not well defined

α is literally an arbitrary parameter

This is what has motivated the work I’m talking about

The problem is now solved



Consider the production of a system X at an e+e− collider:

e+(Pe+) + e−(Pe−) −→ X

Its cross section is written as follows:

dΣe+e−(Pe+ , Pe−) =
∑

kl=e+e−γ

∫

dy+dy− Bkl(y+, y−) dσkl(y+Pe+ , y−Pe−)

Here:

� dΣe+e− : the collider-level cross section

� dσkl: the particle-level cross section

� Bkl(y+, y−): describes beam dynamics (including beamstrahlung)

� e+ , e− on the lhs: the beams

� e+ , e− , γ on the rhs: the particles

I’ll mostly be concerned with computing dσkl in the rest of the talk



The particle-level cross section dσ embeds all that is not beam dynamics

It is perturbatively computable, but plagued by log(m/E) terms to all
orders. Fortunately, the dominant classes of these are factorisable:

dσ (log(m/E),m/E) = K (log(m/E)) ⊗ dσ̂ (m/E)

The idea is to compute dσ̂ to some fixed order in perturbation theory,

and K to all orders (so that logs are resummed)

The definitions of K and of the convolution (⊗) determine unambiguously
how the logs are resummed.



Therefore, two things to be done:

1. Compute dσ̂

2. Compute K to all orders within a definite convolution scheme



Therefore, two things to be done:

1. Compute dσ̂

This is a process-by-process operation. Note that at the NLO automation has

completely solved the problem for arbitrary processes – see e.g. the e+e− results

of MadGraph5 aMC@NLO (1405.0301, 1804.10017, 2108.10261)



Therefore, two things to be done:

1. Compute dσ̂

2. Compute K to all orders within a definite convolution scheme

This is a universal (i.e. process independent) operation, which we carry out by

means of a collinear-factorisation approach.

(I’ll concentrate here on ISR. Analogous formulae hold for FSR)



Collinear factorisation

=

dσ = PDF ⋆ PDF ⋆ dσ̂

PDFs collect (universal) small-angle dynamics



dσkl(pk, pl) =
∑

ij=e+,e−,γ

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2) + O

((

m2

s

)p)

where one calculates Γ and dσ̂ to predict dσ

� k , l = e+ , e− , γ on the lhs: the particles that emerge from beamstrahlung

� i , j = e+ , e− , γ on the rhs: the partons

� dσkl: the particle-level (ie observable) cross section

� dσ̂ij : the subtracted parton-level cross section.

Generally with m = 0 =⇒ power-suppressed terms in dσ discarded

� Γi/k: the PDF of parton i inside particle k

� µ: the hard scale, m2 ≪ µ2 ∼ s



Very similar to QCD, with some notable differences:

� PDFs and power-suppressed terms can be computed perturbatively

� An object (e.g. e−) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not



z-space LO+LL PDFs (α log(E/m))k:
∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes



z-space LO+LL PDFs (α log(E/m))k:
∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes

z-space NLO+NLL PDFs (α log(E/m))k + α (α log(E/m))k−1:
−→ 1909.03886, 1911.12040, 2105.06688

◮ 0 ≤ k ≤ ∞ for z ≃ 1

◮ 0 ≤ k ≤ 3 for z < 1 ⇐⇒ O(α3)

◮ matching between these two regimes

◮ for e+, e−, and γ

◮ both numerical and analytical

Main tool: the solution of PDFs evolution equations



Henceforth, I consider the dominant production mechanism at an e+e−

collider, namely that associated with partons inside an electron⋆

Simplified notation:

Γi(z, µ
2) ≡ Γi/e−(z, µ2)

⋆The case of the positron is identical, at least in QED, and will be understood



NLO initial conditions (1909.03886)

Conventions for the perturbative coefficients:

Γi = Γ
[0]
i +

α

2π
Γ

[1]
i + O(α2)

Results:

Γ
[0]
i (z, µ2

0) = δie−δ(1 − z)

Γ
[1]
e−

(z, µ2
0) =

[

1 + z2

1 − z

(

log
µ2

0

m2
− 2 log(1 − z) − 1

)]

+

+Kee(z)

Γ[1]
γ (z, µ2

0) =
1 + (1 − z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

+Kγe(z)

Γ
[1]
e+ (z, µ2

0) = 0

Note:

◮ Meaningful only if µ0 ∼ m

◮ In MS, Kij(z) = 0; in general, these functions define a factorisation scheme



NLL evolution (1911.12040, 2105.06688)

General idea: solve the evolution equations starting from the initial
conditions computed previously

∂Γi(z, µ
2)

∂ logµ2
=
α(µ)

2π
[Pij ⊗ Γj ] (z, µ

2) ⇐⇒
∂Γ(z, µ2)

∂ logµ2
=
α(µ)

2π

[

P ⊗ Γ
]

(z, µ2) ,

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

� Mellin space: suited to both numerical solution and all-order, large-z

analytical solution (called asymptotic solution). Dominant

� Directly in z space in an integrated form: suited to fixed-order, all-z

analytical solution (called recursive solution). Subleading



Bear in mind that PDFs are fully defined only after adopting a definite

factorisation scheme, which is the choice of the finite terms associated

with the subtraction of the collinear poles

(done by means of the Kij(z) functions)

� 1911.12040 −→ MS

� 2105.06688 −→ a DIS-like scheme (called ∆)

At variance with the QCD case, there is also an interesting

renormalisation-scheme dependence of QED PDFs

(not discussed in this talk)



Asymptotic MS solution

Non-singlet ≡ singlet; photon is more complicated

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

{

1 +
α(µ0)

π

[

(

L0 − 1
)

(

A(ξ1) +
3

4

)

− 2B(ξ1) +
7

4

+
(

L0 − 1 − 2A(ξ1)
)

log(1 − z) − log2(1 − z)

]}

where L0 = log µ2
0/m

2, and:

A(κ) = −γE − ψ0(κ)

B(κ) =
1

2
γ2

E
+
π2

12
+ γE ψ0(κ) +

1

2
ψ0(κ)

2 −
1

2
ψ1(κ)

with:



ξ1 = 2t−
α(µ)

4π2b0

(

1 − e−2πb0t
)

(

20

9
nF +

4πb1
b0

)

= 2t+ O(αt) = η0 + . . .

ξ̂1 =
3

2
t+

α(µ)

4π2b0

(

1 − e−2πb0t
)

(

λ1 −
3πb1
b0

)

=
3

2
t+ O(αt) = λ0η0 + . . .

λ1 =
3

8
−
π2

2
+ 6ζ3 −

nF

18
(3 + 4π2)

and:

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+ O(α3) , L = log
µ2

µ2
0

.



Asymptotic ∆ solution

Non-singlet ≡ singlet

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

[

(

1 +
3α(µ0)

4π
L0

)

∞
∑

p=0

S1,p(z) −
α(µ0)

π
L0

∞
∑

p=0

S2,p(z)

]

The Si,p(z) functions are increasingly suppressed at z → 1 with growing p.
The dominant behaviour is:

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

[

α(µ)

α(µ0)
+
α(µ)

π
L0

(

A(ξ1) + log(1 − z) +
3

4

)]

A vastly different logarithmic behaviour w.r.t. the MS case

However, Γ
(MS)
NLL − Γ

(∆)
NLL = O(α2)



ΓNLL/ΓLL at large z (µ0 = m)
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In MS, significant scale dependence, and significant differences w.r.t.
LL results. This doesn’t happen in ∆ (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors:

PDFs are unphysical, and there are huge cancellations with partonic cross sections.

Also, bear in mind that Γ
(MS)
NLL − Γ

(∆)
NLL = O(α2)



ΓNLL/ΓLL at large z (µ0 = m)
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Take-home message

Many theoretical techniques have been developed with LHC physics in

mind, that can be ported to an e+e− environment

A convenient way to do so is to exploit the similarities of

collinear-factorisation formulae in QCD and QED

In a recent series of papers we have upgraded the accuracy of those

formulae from the LL to the NLL, thus paving the way for phenomenology

studies (now ongoing) characterised by sensible uncertainties

Together with automated (NLO) methods, the above will give the
community powerful tools that will help enlarge the physics scope
of e+e− simulations



EXTRA SLIDES



A look at the photon:

Γ(MS)
γ (z, µ2)

z→1
−→

tα(µ0)
2

α(µ)

3

2πξ1
log(1 − z) −

tα(µ0)
3

α(µ)

1

2π2ξ1
log3(1 − z)

Γ(∆)
γ (z, µ2)

z→1
−→

1

2π

α2(µ0)

α(µ)

1 + (1 − z)2

z
L0 +

1

2πξ1

t α2(µ0)

α(µ)
L0

−
t α(µ)

2πξ1

e−γEξ1eξ̂1

Γ (1 + ξ1)
(1 − z)ξ1 L0 .

MS vs ∆ exhibits the same pattern as for (non-)singlet: logarithmic

terms dominate at z → 1 in MS, but are absent in ∆



Recursive solution

Too involved to be reported here. For the record, the (previously unknown)
recursive NLL equations are:

J LL

k = P
[0] ⊗J LL

k−1

J NLL

k = (−)k(2πb0)
kF [1](µ2

0)

+
k−1
∑

p=0

(−)p(2πb0)
p

(

P
[0] ⊗J NLL

k−1−p + P
[1] ⊗J LL

k−1−p

−
2πb1
b0

P
[0] ⊗J LL

k−1−p

)

Integrated PDFs expanded on the basis of the J LL and J NLL functions
with known coefficients

We have computed these for k ≤ 3 (J LL) and k ≤ 2 (J NLL), ie to O(α3)

Results in 1911.12040 and its ancillary files



A remarkable fact

Our asymptotic solutions, expanded in α, feature all of the terms:

logq(1 − z)

1 − z
singlet, non − singlet

logq(1 − z) photon

of our recursive solutions. This ensures a smooth matching

Non-trivial; stems from keeping subleading terms (at z → 1) in the AP kernels

The above applies to the MS case: in the ∆ scheme, logarithms are absent


