

KKMCee status and planning

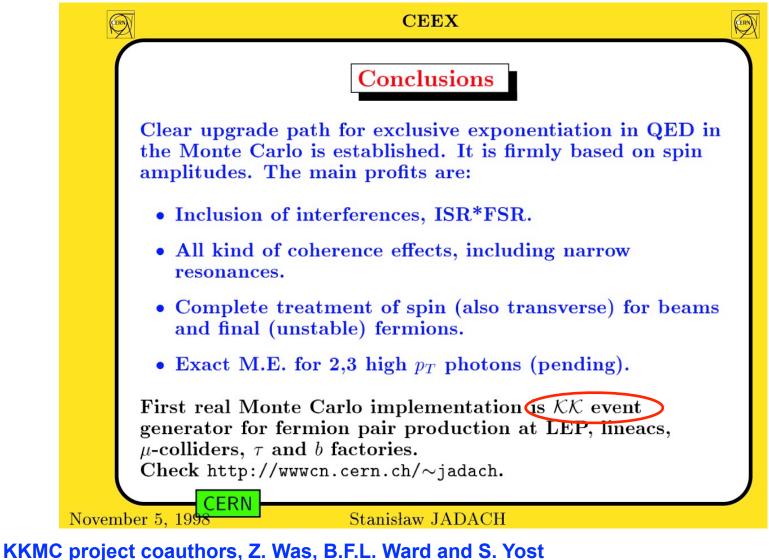
Stanisław Jadach

FCC Physics Workshop

February 9th, 2022

S. Jadach, FCC Physics Workshop, February 9th, 2022

New C++ version of KKMCee


Monte Carlo for $e^+e^- \rightarrow f\bar{f} + n\gamma$, $f = \mu, \tau, \nu$, quarks

- New complete code of KKMCee in C++ is ready and tested.
 Resides in the yet non-public repository on GitHub.
- Interfaced with F77 electroweak library DIZET 6.45 and TAUOLA.
- Armed with Les Ouches interface for quark pair hadronization.
- Beamstrahlung for ILC/CLIC and Gaussian BES of FCCee.
- Reproduces exactly all classic benchmarks of KKMC from the 1999 LEP workshop, from PRD63 (2000) article and more...
- From the physics point of view it is identical with the F77 version.
- From now on the starting point for any future development.
- Completing documentation, article to Comp.Phys.Commun. 50% ready.
- A few more improvements planned in C++ KKMCee before publication.
- From now on F77 KKMCee is frozen, new devel. only in C++ version.

First version of KKMC was announced in November 1998, seminar at CERN TH

F77 versions of KKMCee

- 2000: First public version 4.13 (to be cited, 910 citations.), Comput. Phys. Commun. 130 (2000) 360, hep-ph/9912214
- **2001:** Production version 4.16, for LEP experiments. Improved matrix elm. for the $\nu \bar{\nu}$ pairs, **RRes** module for the off-shell $\gamma^* \rightarrow$ narrow resonances.
- **2002:** Development version 4.19, for LEP exp. and future colliders. C^{++} wrappers, further improvements for $\nu \bar{\nu}$ pairs, RRes. Adding non-soft $\mathcal{O}(\alpha^2 L)$ corrs. of Phys.Rev. D65(2002) 073030.
- 2013: Development version 4.22, for future colliders automake/autotools system introduced. Muon collider option. Validating under various linux systems. Minor bugs. Source codes on <u>http://jadach.web.cern.ch/jadach/KKindex.html</u>
- **2017:** Development version 4.24, for future colliders

Beamstrahlung improved/simplified. Validation under Centos7 Ubuntu16. Source code on <u>http://192.245.169.66:8000/FCCeeMC/wiki/kkmc</u>

• **2021:** Production version 4.32, for FCCee studies. Last F77 version!

Upgrade DIZET to 6.45 version, upgrade of TAUOLA, LHE interface for hadronization. Integrated into FCCee software. Source code on <u>https://github.com/KrakowHEPSoft/KKMCee</u>

Improved MC algorithm in C++ KKMCee

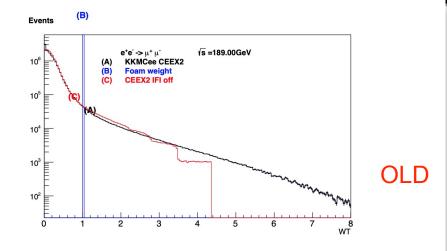


Figure 2: Weight distribution for the muon pair channel at 189GeV for classic KKMC, with flat $\cos \theta$ at the baseline level. MC sample of weighted 18M events. Weight distribution in case of IFI switched off is also shown, see curve (C).

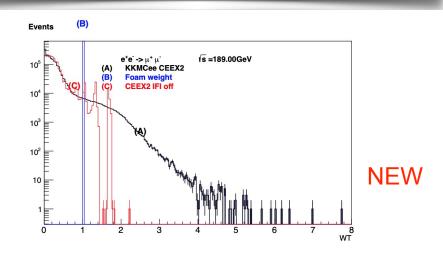
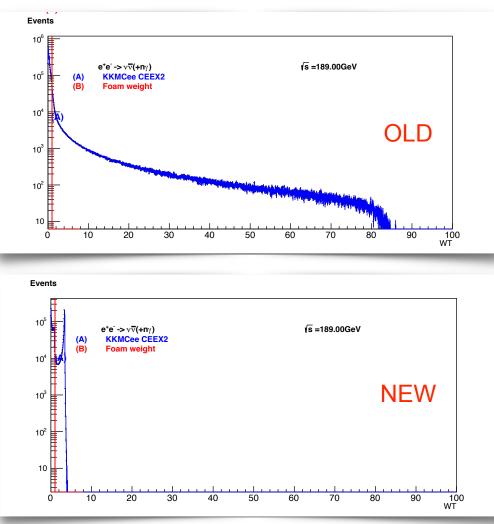


Figure 1: Weight distribution for the muon pair channel at 189GeV. MC sample of 2M variable weight events. Weight distribution in case of IFI switched off is also shown, see curve (C).

$$e^+e^- \to \mu^+\mu^- + n\gamma$$


In the old KKMC cos(theta) distr. of final fermions was generated flat and modelled by main MC WT

In new C++ KKMCee cos(theta) is modelled by FOAM and main MC WT has a nicer distribution, with the reduced tail by factor 2. Getting WT=1 now costs less CPU!

(Foam internally provides its "events" with WT=1)

Improved MC weight in C++ KKMCee

 $e^+e^- \rightarrow \nu_e \bar{\nu}_e + n\gamma$

• The improvement of the MC weight due to cos(theta) generation by FOAM is, however, more dramatic for the electron neutrino pair due to peak in cos(theta) from t-channel W exchange, by factor 20.

Example of benchmarking

TABLE III. Absolute predictions for the total cross section and charge asymmetry. They are for the $\mu^+\mu^-$ final state at $\sqrt{s} = 189$ GeV. The results are plotted as a function of the cutoff on the total photon energy $v_{\max} = 1 - s'_{\min}/s$. The "reference" σ and A_{FB} in first column are from the $\mathcal{K}\mathcal{K}$ sem semi-analytical program. We have used a Higgs boson mass of 100 GeV and a top mass of 175 GeV as input parameters.

$v_{\rm max}$	KKsem refer.	$\mathcal{O}(\alpha^3)_{\rm EEX3}$	$\mathcal{O}(\alpha^2)_{\text{CEEX}}$ int OFF	$\mathcal{O}(\alpha^2)_{\text{CEEX}}$	KORALZ	KORALZ interf.				
	$\sigma(v_{\max})$ [pb], \mathcal{KK} MC and KORALZ 1st order									
0.01	1.6712 ± 0.0000	1.6687 ± 0.0020	1.6690 ± 0.0020	1.7679 ± 0.0024	0.9639 ± 0.0009	0.1610 ± 0.0009				
0.10	2.5198 ± 0.0000	2.5164 ± 0.0023	2.5170 ± 0.0023	$2.5967 \!\pm\! 0.0027$	2.1919 ± 0.0010	$0.0880 \!\pm\! 0.0010$				
0.30	3.0616 ± 0.0000	3.0565 ± 0.0024	3.0581 ± 0.0024	3.1190 ± 0.0029	2.7690 ± 0.0010	0.0545 ± 0.0010				
0.50	3.3747 ± 0.0000	3.3682 ± 0.0025	3.3713 ± 0.0025	3.4203 ± 0.0029	3.0565 ± 0.0010	$0.0385 \!\pm\! 0.0010$				
0.70	3.7225 ± 0.0000	3.7131 ± 0.0025	3.7200 ± 0.0025	3.7596 ± 0.0030	3.3649 ± 0.0010	0.0246 ± 0.0010				
0.90	7.1434 ± 0.0000	7.0904 ± 0.0024	7.1496 ± 0.0024	7.1789 ± 0.0030	6.3558 ± 0.0010	$0.0210 \!\pm\! 0.0010$				
0.99	7.6145 ± 0.0000	7.5511 ± 0.0024	7.6254 ± 0.0024	7.6542 ± 0.0029	6.7004 ± 0.0010	0.0213 ± 0.0010				
$A_{\rm FB}(v_{\rm max}), \mathcal{KK} {\rm MC} {\rm and} {\rm Koral z} 1 {\rm st} {\rm order}$										
0.01	0.5654 ± 0.0000	0.5650 ± 0.0014	0.5650 ± 0.0014	$0.6111 \!\pm\! 0.0016$	$0.5765 \!\pm\! 0.0013$	0.1201 ± 0.0013				
0.10	0.5664 ± 0.0000	0.5660 ± 0.0011	0.5660 ± 0.0011	0.5922 ± 0.0012	0.5784 ± 0.0006	0.00324 ± 0.0006				
0.30	0.5692 ± 0.0000	$0.5687 \!\pm\! 0.0009$	0.5686 ± 0.0009	0.5856 ± 0.0011	$0.5818 \!\pm\! 0.0005$	0.0164 ± 0.0005				
0.50	0.5744 ± 0.0000	0.5738 ± 0.0009	0.5737 ± 0.0009	$0.5863 \!\pm\! 0.0010$	0.5868 ± 0.0005	0.0112 ± 0.0005				
0.70	0.5864 ± 0.0000	$0.5852 \!\pm\! 0.0008$	$0.5852 \!\pm\! 0.0008$	$0.5947 \!\pm\! 0.0009$	0.5972 ± 0.0004	$0.0078 \!\pm\! 0.0004$				
0.90	$0.3105\!\pm\!0.0000$	$0.3115 \!\pm\! 0.0004$	0.3096 ± 0.0004	$0.3170 \!\pm\! 0.0005$	$0.3260 \!\pm\! 0.0002$	$0.0037 \!\pm\! 0.0002$				
0.99	$0.2851 \!\pm\! 0.0000$	$0.2867 \!\pm\! 0.0004$	0.2843 ± 0.0004	$0.2912 \!\pm\! 0.0004$	$0.3039 \!\pm\! 0.0002$	$0.0024 \!\pm\! 0.0002$				

$v_{ m max}$	eeFoam _{IFIoff}	KKMCee EEX2	CEEX2 IFIoff	CEEX2 IFI on	eeFoam $_{\rm IFIon}$				
	$\sigma(v_{\rm max}) \; [{ m pb}]$								
0.02	1.8916 ± 0.0002	1.8921 ± 0.0001	1.8922 ± 0.0001	1.9894 ± 0.0001	1.9907 ± 0.0002				
0.10	2.5193 ± 0.0002	2.5200 ± 0.0001	2.5201 ± 0.0001	2.6015 ± 0.0001	2.6029 ± 0.0003				
0.30	3.0611 ± 0.0002	3.0615 ± 0.0001	3.0618 ± 0.0001	3.1236 ± 0.0001	3.1224 ± 0.0003				
0.50	3.3743 ± 0.0002	3.3737 ± 0.0001	3.3750 ± 0.0001	3.4250 ± 0.0001	3.4194 ± 0.0003				
0.70	3.7218 ± 0.0002	3.7185 ± 0.0001	3.7232 ± 0.0001	3.7641 ± 0.0001	3.7500 ± 0.0003				
0.90	7.1387 ± 0.0003	7.0998 ± 0.0001	7.1553 ± 0.0001	7.1849 ± 0.0001	7.1495 ± 0.0004				
0.99	7.6132 ± 0.0003	7.5604 ± 0.0001	7.6302 ± 0.0001	7.6596 ± 0.0001	7.6233 ± 0.0004				
	$A_{\rm FB}(v_{ m max})$								
0.02	0.5657 ± 0.0001	0.5657 ± 0.0001	0.5657 ± 0.0001	0.6062 ± 0.0001	0.6029 ± 0.0001				
0.10	0.5665 ± 0.0001	0.5666 ± 0.0000	0.5666 ± 0.0000	0.5931 ± 0.0001	0.5893 ± 0.0001				
0.30	0.5694 ± 0.0001	0.5693 ± 0.0000	0.5692 ± 0.0000	0.5864 ± 0.0000	0.5819 ± 0.0001				
0.50	0.5745 ± 0.0001	0.5743 ± 0.0000	0.5742 ± 0.0000	0.5870 ± 0.0000	0.5821 ± 0.0001				
0.70	0.5864 ± 0.0001	0.5856 ± 0.0000	0.5857 ± 0.0000	0.5953 ± 0.0000	0.5906 ± 0.0001				
0.90	0.3106 ± 0.0000	0.3117 ± 0.0000	0.3097 ± 0.0000	0.3174 ± 0.0000	0.3129 ± 0.0001				
0.99	0.2851 ± 0.0000	0.2869 ± 0.0000	0.2845 ± 0.0000	0.2917 ± 0.0000	0.2867 ± 0.0000				

Table III of Phys.Rev. D63 (2000) of $\sigma_{tot}(v_{max})$ and $A_{FB}(v_{max})$ is correctly reproduced using C++ version of KKMCee.

NB. Old semi-analytical tool *KKsem* for the internal x-checks of KKMC is now replaced by *KKeeFoam*, with added IFI contribution.

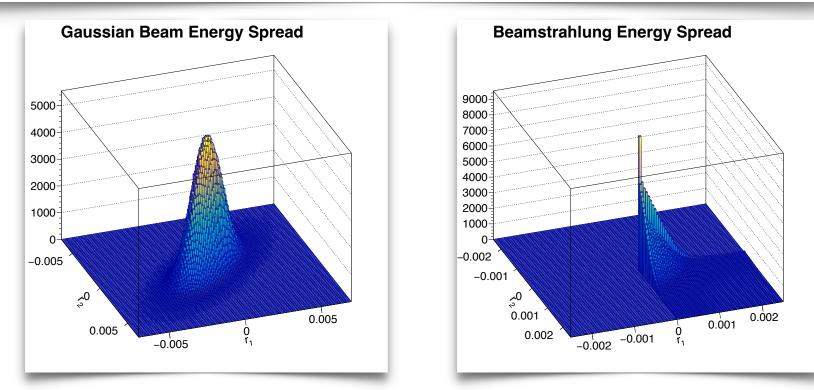
5-digit precision from the Monte Carlo!!!

S. Jadach, FCC Physics Workshop, February 9th, 2022

Planning

- CEEX $\mathcal{O}(\alpha^n L^n)$ n=3 urgently needed, may be also for $n = 4...\infty$, without destroying soft limit?
- Automatising construction of CEEX spin amplitudes (4k lines of dense code), for porting it to other processes like HZ?
- Hope to get soon better $\mathcal{O}(\alpha^1)$ EW library. But $\mathcal{O}(\alpha^2)$ also need! NB. EW loop corrs. for differential $e^+e^- \rightarrow f\bar{f}\gamma$ distributions are still missing:(
- Parton shower like MC algorithm for complete multi-photon phase space with correct soft limit? Possibly more efficient in some corners of the phase space.
- Integrating Bhabha process into KKMCee??? Thinkable, provided good quality EW library is available:)
- and more

Summary



- Two web pages and public GitHub repository with the F77 source codes and extensive documentation are available.
- F77 version is frozen, all actual/future development only in C++.
- New C++ version of KKMCee is already well tested and almost ready for publication in CPC
- To be added before the publication:
- HEPMC3 interface to TAUOLA, PHOTOS, QCD parton shower MC!
- - New electroweak library in C++ with complex mass scheme?
- (Beamstrahlung and Gaussian BES are already in F77/C++ KKMCee)

Useful discussions with KKMC project coauthors, Z. Was, B.F.L. Ward and S. Yost are acknowledged!

BES/BST distribution in KKMCee

- In KKMC is since long there is an option of the variable beam energies due to beamstrahlung (BST) distributions of ILC with CIRCE spectra.
- **BST** distributions reside in the 3-dimensional integrand of **FOAM**, along with the total energy loss due to initial state radiation ISR.
- Recently Gaussian **BES** spectrum of FCCee has been added as another new option in F77 and C++ versions of KKMCee in the FOAM integrand.

S. Jadach, FCC Physics Workshop, February 9th, 2022