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Advantages
N, number of primary ionizations

* independent from cluster size fluctuations
* insensitive to highly ionizing 6-rays
* independent from gas gain fluctuations
e a2mtrackinaHe— mix gives Ncl > 2400 (for a m.i.p.):
Oancy/ax/ (ANg/dx) = Ny /2 < 2.0% (at 100% counting efficiency)
« potentially, a factor > 2 better than dE/dx
* resolution scales with L™ (not L7%37 as in dE/dx)

Advantages of Helium

* |ow primary ionization density = large time separation
* |low drift velocity = even larger time separation

* |ow average cluster size

* low singe electron diffusion

08/02/2022 FCC Physics Workshop - FG



Advantages
N, number of primary ionizations

* independent from cluster size fluctuations

* insensitive to highly ionizing 6-rays

* independent from gas gain fluctuations

e a2mtrackinaHe— mix gives Ncl > 2400 (for a m.i.p.):

Oancy/ax/ (ANg/dx) = Ny /2 < 2.0% (at 100% counting efficiency)
« potentially, a factor > 2 better than dE/dx
* resolution scales with L™ (not L7%37 as in dE/dx)

Advantages of Helium :
Recipe
* |ow primary ionization density = large time separation _ _
« low drift velocity = even larger time separation High front end bandwidth (= 1 GHz)
* low average cluster size High sampling rate (> 2 GSa/s)

> 12 bit

* low singe electron diffusion
S/N ratio > 8
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PID in IDEA drift chamber

Expected from analytical calculations for the IDEA drift chamber He/iC,H,, = 90/10
° ° - —1
Particle Separation (dE/dx vs dN/dx) 6,=12 cm
' p-K dE/dx o(dE/dx)/(dE/dx)
K-pi dE/dx =4.3%
pi-mu dE/dx
p-K-dN/dx 80% cluster
o K-pi dN/dx . ff .
g, pi-mu dN/dx countlng erriciency
E mu-e dE/dx
: mu-e dN/dx O'(de/dX)/(de/dX)
=2l3%
Particle separation vs cluster counting efficiency
o (2 m track)
e -
g | oeeeamiitiheas s sos L
4 | =——rianaxaiocevse L ]
g 6 — A o
%s —
............ 2 ;1 SRR T
2
p [GeVic] (1>
08/02/2022 FCC PhySiCS WorkShOp - FG ° o2 clustergfunﬁngefﬁci()élfcy oe !




PID: analytical calculations vs full simulation
Which simulation?

Garfield++ can describe in detail the properties and the performance of a drift chamber single cell, but
it is not suitable to simulate a large-scale detector and to study collider events.

Geant4 can simulate elementary particle interactions with the material of a complex detector and
study collider events, but the fundamental properties and the performances of the sensible elements,
like the drift cells, have to be parameterized or "ad-hoc" physics models have to be implemented.

We have developed an algorithm, which uses the energy deposit information provided by Geant4, to
reproduce, in a fast and convenient way, the clusters density and the cluster size distributions
predicted by Garfield++.

A simulation of the ionization process in 200 drift cells, 1 cm wide, in 90% He and 10% iC,H;, gas
mixture has then been performed both in Garfield++ and in Garfield-modeled Geant4.

Do the simulations confirm the prediction?

F. Cuna, N. De Filippis, F. Grancagnolo, G. Tassielli, Simulation of particle identification with
the cluster counting technique, arXiv:2105.07064v1 [physics.ins-det] 14 May 2021
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PID: full simulation vs analytical calculations

# of sigma

Particle separation from truncated mean dE/dx Particle separation dN/dx . .
: P Faricn dN/dx: consider rt/K separation
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3 LI S B 3 =00+ . " | much more rapidly at higher
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Particle separation from truncated mean dE/dx ., Particle separation dN/dx
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= et e density and the cluster size
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(We are assuming here a cluster counting efficiency of 100%).
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PID full simulation with cluster counting

dE/dx and dN/dx vs By

Energy loss Number of cluster for different particles vs By
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PID full simulation with cluster counting

Open questions:

1.

There exists limited experimental data on cluster density and cluster population for He based
gas. Particularly in the relativistic rise region, in order to compare predictions.

Is the theoretical model derived by Garfield++ correct to describe the phenomenon, given
the limited amount of experimental data?

Despite the fact that the Garfield++ model in GEANT4 reproduces reasonably well the
Garfield++ predictions, why particle separation, both with dE/dx and with dNg/dx, in GEANT4
is considerably worse than in Garfield++?

Despite a higher value of the Fermi plateau (1.38 x m.i.p.) for dN,/dx with respect to dE/dx
(1.26 x m.i.p.), why it is reached at lower values of By (250 vs 600) with a steeper slope?

These questions are crucial for establishing the particle identification performance at FCCee
and at CEPC

However, the only way to ascertain these issues is an experimental measurement!
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beam test objectives

Beam test plans:

1. First of all, need to demonstrate the ability to count clusters:
at a fixed By (e.g. muons at a fixed momentum) count the clusters by
- doubling and tripling the track length and changing the track angle;
- changing the gas mixture.

2. Establish the limiting parameters for an efficient cluster counting:
- cluster density (by changing the gas mixture)
- space charge (by changing gas gain, sense wire diameter, track angle)
- gas gain saturation
3. In optimal configuration, measure the relativistic rise as a function of By, both in
dE/dx and in dN_,/dx, by scanning the muon momentum from the lowest to the
highest value (from a few GeV/c to about 250 GeV/c at CERN/HS8).

4. Use the experimental results to fine tune the predictions on performance of cluster
counting for flavor physics and for jet flavor tagging both in DELPHES and in full
simulation
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beam test objectives

Beam test plans:

1.

2.

First of all, need to demonstrate the ability to count clusters:

at a fixed By (e.g. muons at a fixed momentum) count the clusters by

- doubling and tripling the track length and changing the track angle; tESt do ne’

- changing the gas mixture. o
Establish the limiting parameters for an efficient cluster counting: dana IVSlS

- cluster density (by changing the gas mixture) o

- space charge (by changing gas gain, sense wire diameter, track angle) [ n prog ress

- gas gain saturation

In optimal configuration, measure the relativistic rise as a function of By, both in
dE/dx and in dN_/dx, by scanning the muon momentum from the lowest to the
highest value (from a few GeV/c to about 250 GeV/c at CERN/HS8).

Use the experimental results to fine tune the predictions on performance of cluster
counting for flavor physics and for jet flavor tagging both in DELPHES and in full

simulation beam test in June 2022
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Test setup

schematic
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Test setup: advantages

no need of external trackers: only interested in path length inside the drift
tube active volume

no need of internal tracking (time-to-distance and t, calibrations, alignment,
track finding and fitting algorithmes, ...)

no need to correct for ambient conditions (very little effect of pressure and
temperature on peak counting)

no need to convert time to distance (just count clusters in the time domain)
no worry of multiple scattering (irrelevant for path length differences)

no need of particle tagging in hadron beams: use only muon beams at
different momenta (different By)

use selected commercial amplifiers neglecting power consumption

use only fully integrated digitizers (WDB) for ease of readout
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Test setup: hardware

* 00000000

16 channels data acquisition board designed and used by 12cm x 6cm upstream and downstream scintillator tiles

the MEG2 experiment at PSI (L= e +V) (designed and used as timing counter of the MEG2
(credit to S. Ritt, Paul Sherrer Institute, Zurich, Switzerland) experiment at PSI) used in coincidence and readout by SiPM
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Test setup: event display
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event display
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3 drift tubes (2 cm)

2 drift tubes (3 cm)

vertical full scale 300 mV (gain 10) — horizontal scale 800 ns
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gas gain
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single electron pulse height [mV x 10]

space charge
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counting peaks
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Expected number of electron peaks:
O clusters/cm (m.i.p.) x 1.3 (rel. rise) x 1.6 electrons/cluster x tube size [cm] x 1/cosa
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counting peaks
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counting peaks
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counting peaks

2 cm tubes — different sense wires — 90%He
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D00

Conclusions

Particle identification via dE/dx has essentially made no progress since over 40 years.
Cluster counting may provide the long sought jump in performance.

Byproduct of the cluster counting technique is the cluster timing technique, which offers
improvements in the impact parameter resolution (directly coupled to transverse
momentum resolution) and allows for a precise event time-stamping.

Both analytical and montecarlo simulations suggest an improvement of a factor 2 of
dN/dx versus dE/dx.

Absolute performance of particle separation power in the relativistic region (crucial for
FCC-ee and CEPC) needs to be assessed with experimental measurements.

A strongly motivated beam test campaign has begun. We are concentrating our efforts
in demonstrating the ability to efficiently count ionization clusters and we are very

close to accomplish this task.
Next step will be the experimental measurement of the cluster density and cluster size

distributions on the relativistic rise region, which will begin this coming summer.
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