Quarks and gluons in the Lund plane

Gregory Soyez, with Frederic Dreyer and Adam Takacs based on arXiv:2112.09140

IPhT, CNRS, CEA Saclay

FCC Physics Workshop, February 7-11 2022

- A few word about quark v. gluon tagging
- The Lund plane representation of jets (and events)
- Osing Lund variables to tag quarks and gluons
 - An approach using perturbative QCD
 - An approach using Deep Learning

Applications and results

- Validation (in the collinear limit)
- Boosted jets at the LHC
- a (preliminary) FCC-ee application

Quarks v. gluons

Main topic of this talk

Discriminate quark-initiated jets from gluon-initiated ones

generic tool with many applications:

coll	q	g
any	BSM	QCD
hh	VBF <i>H</i>	gg ightarrow H
ee	Z ightarrow q ar q	H ightarrow gg

Intrinsic limitation:

- *q* and *g* not really well defined
 e.g. a "gluon jet" is different in
 qq̄ → Zg or in gg → gg
- cross-section in *q/g*-enriched region is well-defined

see e.g. arXiv:1704.03878

What is a Quark Jet? From lunch/dinner discussions

FCC Physics Workshop 4 / 14

FCC Physics Workshop 4 / 14

• closely follow our beloved angular ordering

э

- closely follow our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes

- closely follow our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary

- closely follow our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary
 - secondary

- closely follow our beloved angular ordering
- i.e. mimics partonic cascade
- can be organised in Lund planes
 - primary
 - secondary

• ...

Two different structures			
"primary plane" (follow hard branch)	OR	full (de-)clustering tree	
$\mathcal{L}_{prim} \equiv \{\mathcal{T}_i\}$		$\mathcal{L}_{tree} \equiv \{\mathcal{T}, \mathcal{L}_{hard}, \mathcal{L}_{soft}\}$	

for *ee* events: (similar for jets in *pp*)

$$\begin{split} k_t &= E_{\text{soft}} \sin \theta, \\ z &= \frac{E_{\text{soft}}}{E_{\text{parent}}} \\ \psi &\equiv \text{azimuthal angle} \end{split}$$

(A wide range of) Lund plane applications

- Tagging: q v. g [this talk+⁶], $W^{[1,4]}$, $t^{[4]}$, ...
- Monte Carlo constraints^[1]
- pQCD v. data^[2,3]
- study quark-gluon plasma^[5]
- inputs for Deep Learning^[1,4,6]

Quark/gluon tagging in the Lund plane

Basic approaches

Idea: gluons radiate more than quarks

- shapes (angularities, energy-energy correlations,...)
- multiplicities (*n*_{chg}, Iterated SoftDrop, ...)

Basic approaches

Idea: gluons radiate more than quarks

- shapes (angularities, energy-energy correlations,...)
- multiplicities (*n*_{chg}, Iterated SoftDrop, ...)

ML approaches

Idea: train a Neural Network

- EFN/PFN (1810.05165)
- ParticleNet (next talk)

Basic approaches

Idea: gluons radiate more than quarks

- shapes (angularities, energy-energy correlations,...)
- multiplicities (*n*_{chg}, Iterated SoftDrop, ...)

ML approaches

Idea: train a Neural Network

- EFN/PFN (1810.05165)
- ParticleNet (next talk)

This approach/talkDiscriminate quarks and gluons
based on Lund declusterings
(primaries \mathcal{L}_{prim} , or full tree \mathcal{L}_{tree})Idea: best discriminant given
by the likelihood ratio
 $\mathbb{L}_{prim,tree} = \frac{p(g|\mathcal{L}_{prim,tree})}{p(q|\mathcal{L}_{prim,tree})}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Quark/gluon tagging using perturbative QCD

Approach #1: compute $p(q, g|\mathcal{L})$ in perturbative QCD

Calculation ingredients:

- Consider $k_t \ge k_{t,cut}$ to stay perturbative
- Resum logs to all orders in α_s , up to NLL (single logs)
 - single logs from "DGLAP" collinear splittings
 - some single logs for emissions at commensurate angles

Comments:

- LL (double logs) equivalent to the Iterated SoftDrop multiplicity
- Paper focused on jets in *pp* (would apply to FCC-*hh*) where large-angle and fixed-order corrections are process-dependent (and thus neglected)

Quark/gluon tagging using Machine Learning

Approach #2: input the Lund coordinates in a Neural Network

Primary Lund plane

Ingredients:

- LSTM network
- inputs: $\ln \theta$, $\ln k_t$, $\ln z$, Ψ
- with or without a k_t cut

Comments:

- DNN, CNN tried but less effective
- Could use Attention instead

Full Lund tree

Ingredients:

- Lund-Net (graph) network
- inputs: $\ln \theta$, $\ln k_t$, $\ln z$, Ψ
- with or without a k_t cut

Comments:

- similar to Particle-Net but the Lund structure is simpler
- Could add PDG-ID info

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

Validation in the collinear limit

our analytic discriminant is exact/optimal in the dominant collinear limit $\theta_1 \gg \theta_2 \gg \cdots \gg \theta_n$ \Rightarrow ML expected to give the same performance

AUC: network convergence

ROC curves agree

Converges for large-enough networks

Gregory Sovez

FCC Physics Workshop 11 / 14

$pp ightarrow Zq \text{ v. } pp ightarrow Zg \qquad (p_t \sim 500 \text{ GeV}, R = 0.4)$

• clear performance ordering:

• • = • • = •

$pp \rightarrow Zq \text{ v. } pp \rightarrow Zg \qquad (p_t \sim 500 \text{ GeV}, R = 0.4)$

• clear performance ordering:

Lund+ML > Lund analytic > ISD
 tree > prim

• larger gains with no k_t cut

FCC Physics Workshop 12 / 14

pp ightarrow Zq v. pp ightarrow Zg ($p_t \sim 500$ GeV, R = 0.4)

• clear performance ordering:

Lund+ML > Lund analytic > ISD
 tree > prim

- larger gains with no k_t cut
- Analytic approach shows gains for k_t > 1 GeV (shapes improve at small ε_q by adding smaller k_t)

$pp \rightarrow Zq \text{ v. } pp \rightarrow Zg \qquad (p_t \sim 500 \text{ GeV}, R = 0.4)$

• clear performance ordering:

Lund+ML > Lund analytic > ISD
 tree > prim

- larger gains with no k_t cut
- Analytic approach shows gains for k_t > 1 GeV (shapes improve at small ε_q by adding smaller k_t)
- ML performance on par with PFN, slightly better than Particle-Net

(treatment of PDG-ID could maybe be improved)

• • = • • = •

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s}=125$ GeV, no ISR)

observed performance:

Lund-Net in single jet/hemisphere
 6% (10%) quark mistag for
 70% (80%) gluon efficiency

Not quite the 1% quark mistag in 2107.02686 (see also David d'Enterria's talk)

In agreement with numbers from June 2021 FCC week (see also Giovanni Marchiori's talk) Watch out: $H \neq HZ$

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s} = 125$ GeV, no ISR)

observed performance:

- Lund-Net in single jet/hemisphere
- assuming 2 independent tags (not physical)

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s}=125$ GeV, no ISR)

observed performance:

- Lund-Net in single jet/hemisphere
- assuming 2 independent tags (not physical)
- tagging both hemispheres
 - i.e. both jets should be tagged

full event clearly worse that $(jet)^2$

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s} = 125$ GeV, no ISR)

observed performance:

- Lund-Net in single jet/hemisphere
- assuming 2 independent tags (not physical)
- tagging both hemispheres

• double Lund-Net tag

train separately on hard & soft hemispheres use another NN (or MVA) to combine the two

clear performance gain

FCC Physics Workshop 13 / 14

$e^+e^- ightarrow Z ightarrow q ar q$ v. $e^+e^- ightarrow H ightarrow gg$ $(\sqrt{s} = 125$ GeV, no ISR)

observed performance:

- Lund-Net in single jet/hemisphere
- assuming 2 independent tags (not physical)
- tagging both hemispheres
- double Lund-Net tag
- Lund-Net for the full event Another performance gain

Watch out: numbers to be taken with care

- fixed-order corrections are relevant at large ε_g
- no ISR, no detector effects, ...

э

Conclusions

- Quark/gluon discrimination is a complex task with many applications
- Lund declusterings apply to many domains of jet physics
 ⇒ braod usefulness for LHC/FCC-*ee*/FCC-*hh*
- **③** Focus on Lund declusterings for quark/gluon tagging:
 - maximise likelihood ratio either in pQCD or with ML
 - good performance seen at the LHC

ヘロマ ヘ動マ ヘヨマ ヘロマ