
Strange Jet Tagging at FCCee using CNNs

Freya Blekman (DESY+UHH), Florencia Canelli (UZH), Kunal Gautam (VUB+UZH)

Eduardo Plörer (VUB+UZH), A.R. Sahasransu (VUB), Lode Vanhecke (VUB)

Why s-tagging?
● Separating s- and u/d-jets is one of hardest problems in jet flavour tagging

● Z→ss decay width measurement, potential Higgs→strange studies, tool for

various BSM studies (FCNC, etc)

● Improvement in s-tagging with the use of ML

● Good detector performance test

2

Related Work
● There have been similar studies for hadron colliders, and ongoing studies for e+e- colliders.

○ 2003.09517 (Nakai et. al.)

○ 1811.09636 (Duarte-Campderros et. al.)

○ 2011.10736 (Erdmann et. al.)

○ And others

○ See also this talk (after this) from FCC-ee physics meeting

https://indico.cern.ch/event/1086252/contributions/4567079/attachments/2333915/3977841/StrangeTagging_VMMCAIRO_MBASSO_FCCPhysicsMeeting_Oct25th2021.pdf

Spring2021 IDEA Samples

● Preselection in FCCAnalyses to make ntuples

with 700,000 Zuds events (including both

Reco-level and Gen-level information)

○ Trained the CNN model with these 100,000

events

○ Tested the model on the next 200,000 events

○ The low event numbers are used for these

proof-of-principle studies

○ Eventually run on large sample

● Subsequent analysis and preparation of jet

images performed in Coffea framework

3

Jet Clustering: Choice of Algorithm Exclusive clustering into exactly 2 jets using
E-scheme for 100,000 Z uds events

Due to absence of a distance parameter with respect to the beam in the eekt-algorithm, particles close to
the beam are not thrown away but clustered into jets, unlike the kt-algorithm; therefore jet axis and jet
cone spread depend on the choice of clustering algorithm.

4

Jet Constituents: Gen-level Distribution

● Jet constituents have following basic cuts applied: pT> 500 MeV and |cos(θ)| < 0.97 (~=14°)
● s-jets tend to have more kaons, while the d-jets tend to have more pions.

5

Strange

jets

Down

jets

Angular Distribution of Gen-level Constituents

● Another potential distinguishing feature can be the angular distribution of these jet constituents

around the jet axis.

● Kaons in the s-jets tend to be closer to the jet axis compared to those in d-jets.

6

Intermezzo:
Jet Flavour Assignment

&
Ghost Matching

7

FCCAnalyses: JetTaggingUtils.cc:get_flavour()

(current) FCCAnalyses Jet Flavour Assignment

These uds jets will either be inaccurately tagged or
stay untagged with the current definition of flavour
assignment.

8

Flavour assignment seems derived for cone(-style)
algorithms, not clear how appropriate for the eekT
jets used here

Another potential issue is that gluon initiated jets
are neglected -> need for a robust jet flavour defn.

Current

algo

Ghost Matching: Idea
In CMS ghost matching is used to map both hadrons and partons to jet flavours

The idea behind ghost matching is to recluster the jets with “ghost” particles that determine the jet’s flavour

A ghost may be either a hadron or a parton (occurring earlier in the MC history)

whose four momentum is rescaled by a small number (10^-18) such that its inclusion in the clustering step

does not change the kinematics of the resulting jets

Jet flavour is determined via the following (simple) recipe

● If b hadron is clustered -> b jet

● If no b, but a c hadron is clustered -> c jet

● If neither a b nor a c hadron are clustered -> light jet

9

If b parton is clustered -> b jet

If no b, but a c parton is clustered -> c jet

If neither a b nor a c hadron are clustered ->

hardest ghost parton determines flavour
Hadron flavour takes precedence

Ghost Matching: Our Implementation

10

Currently, we have implemented the ghost matching definition in a local
version of FCCAnalyses

As our studies are on light jets we use the parton flavour

Ghost partons are defined as partons with status code 21-29 (partons
from the hardest subprocess) {Pythia8}

● Choice of ghost partons as those coming from the hardest
subprocess is motivated by our physics case Z->uds, and the fact
that we are exclusively clustering

● Expect potential subjets arising from showering to be merged
● Jets with flavour ‘0’ have both partons clustered into the other jet in

the event

Ghost Matching: Status Codes + Pros/Cons

11

A more general approach is to consider partons right before they are
hadronized (i.e. after showering). These correspond to status code 71-79

Currently implemented as an option that can be selected when making
nTuples but not used in these studies

Pros -> Can reduce number of unmatched jets for non-cone like
algorithms, Can include gluon jets

Cons -> Current ghost definition has predilection for heavy flavours (even
when the partons are soft + off-axis)

Exact ghost definition is analysis dependent and probably needs tuning

=> Code can be pushed to central repo if others are interested

The rest of this talk uses the status 23 definition of the ghost matching

Jet Tagging with a CNN

12

*based on Lode Vanhecke’s Bachelor Thesis at VUB (July 2021)

Network Structure:
● Similar structure as above, except the image resolution changed from 50x50 pixels to 29x29 pixels

and one fewer module
○ 5-7 inputs depending on detector scenario
○ 4 modules with a convolutional layer (16 filters), a maxpool layer, and a 50% dropout layer
○ Flattened to a dense layer
○ Fully connected to the output layer (3 nodes) with softmax activation function

13

Reminder: Gen-level CNN
Jet Images from 10 Categories

14

Each image is 29x29 pixels,

encompassing the range (-0.5, 0.5)

radians in the θ-ϕ space centered

around the jet axis

θ-ϕ distribution is weighted by a

normalisation factor = |p|

(constituent)/ |p| (jet)

To make the tagger less

dependent on momentum (we

still need to check if this is true)

Details of algorithm in FCC-ee

physics performance meeting talk

october

Performance at 10% fake rate is ~50%

https://indico.cern.ch/event/1085888/contributions/4565674/attachments/2329773/3969771/StrangeTagging_using_CNN_KG.pdf
https://indico.cern.ch/event/1085888/contributions/4565674/attachments/2329773/3969771/StrangeTagging_using_CNN_KG.pdf

Reco-level CNN Input
Jet Images using particle flow candidates

15

Inspired by assumptions of particle ID (no fake rate etc included)

Present centrally produced samples have no general classification of PF

candidates

● Fix: Particle type assigned via associated MC particle (gen-level)

Three PID scenarios are defined:

1. No PID beyond PF: Categories 1-5

2. PF+Ks: Categories 1-5 + K-shorts reconstructed from two pions

(matched to gen level K-short, efficiency approximately ⅔)

3. PF+Ks+K±: Categories 1-5 + K-shorts + charged Kaons (by matching

to MC particle)

Performance

Three working points defined at

fake rates of 10%, 5%, and 1%,

respectively

16

Signal Efficiency 10% fake rate 5% fake rate 1% fake rate

Generator 47.2% 27.7% 7.5%

PF only 17.7% 9.7% 2.0%

PF + Ks 21.9% 12.9% 4.4%

PF + Ks + K+- 39.5% 24.8% 7.0%

Our Suggestions on Detector Requirements
● A sub-detector for PID would improve tagging performance (R. Forty @ FCC

Week’21)

● Timing Detector to identify soft charged-Kaons

● Vertex and tracking detector to reconstruct K_s, Lambda_0, and pi_0 accurately

Future studies can include representative efficiencies/fake rakes for Ks, Lamba_0, etc to

get direct connection tagger performance ←→ detector performance

17

https://indico.cern.ch/event/995850/contributions/4406336/attachments/2274813/3864163/ARC-presentation.pdf
https://indico.cern.ch/event/995850/contributions/4406336/attachments/2274813/3864163/ARC-presentation.pdf

Summary
● First look at a CNN based s-tagger on Spring2021

IDEA event samples

○ Studied jet constituent multiplicity and angular distribution

around the jet axis as potential distinguishing variables

○ Implemented a CNN model in Tensorflow and trained with

jet images from 100,000 events

○ Evaluated this trained network on the jets from 200,000

events to review its performance

○ 3 working points at fake rates of 10%, 5%, and 1%, with signal

efficiencies of 47%, 28%, and 8% respectively in Gen-level

● Performed in FCCAnalyses + Coffea

ToDo -> More samples + include backgrounds

18

Back-up

19

Jet Clustering: MC truth Jet Flavour Assignment

FCCAnalyses GM (71-79) GM (23) MC Truth

s 593,859 779,398 718,799 720,898

d 595,055 588,638 716,600 718,604

u 474,399 556,247 558,859 560,498

c 8,316 36,159 0 -

b 824 4,814 0 -

untagged 327,547 34,744 5742 -

In a sample of 1M Z uds events, i.e. 2M uds jets

This is a potential area for
improvement in FCCAnalyses,
since with the present definition
of flavour assignment, a
significant number of jets are not
assigned a flavour and there are
others which are mistagged.

Clustering the jets inclusively
may reduce this effect. Though it
hasn’t been checked yet.

20

21

Developing on the work by Lode Vanhecke and AR Sahasransu:

● Event generation using MadGraph(v2.6.6) and
Pythia(v8.243)

○ Now using FCCee samples
● Using gen level information only
● Here jet clustering was done using anti-kt algorithm with a

radius of 0.4
○ Upgraded in the study presented today to eekt

(Durham) algorithm
● 2D Angular distribution of jet constituents around the jet

axis as the distinguishing variable
○ Particle ID assumptions

● No decay lengths/lifetime info used
● Strange jet tagging using a CNN

*Lode Vanhecke’s Bachelor Thesis at VUB

Strategy/This talk: To confirm/reproduce the results in that thesis using Spring2021 FCCee IDEA samples at
reco level

Jet Images

● Images are made for different constituent types (next slide)

● θ-ϕ distribution is weighted by a normalisation factor = |p| (constituent)/ |p| (jet)

○ To make the tagger less dependent on momentum (we still need to check if this is true)

● Each image is 29x29 pixels, encompassing the range (-0.5, 0.5) radians in the θ-ϕ space centered

around the jet axis

22

Gen-level CNN Training
● Trained the CNN with 100,000 di-jet

Z uds events, i.e. 200,000 jets.

● Implemented in Tensorflow

● ~14k trainable parameters (lightweight)

-> No obvious overfitting/overtraining

● Categorical cross entropy as loss

function

23

(y is true class label vector, and p is
network prediction vector)

Reco-level CNN Training
● Trained the CNN with 100,000 di-jet Z uds

events, i.e. 200,000 jets.

● Implemented in Tensorflow

● ~14k trainable parameters (lightweight)

-> No obvious overfitting/overtraining

● Categorical cross entropy as loss function

● Very little hyperparamter tuning

24

(y is true class label vector, and p is
network prediction vector)

Working points Three working points defined at fake rates of 10%, 5%, and 1%, respectively

25

Gen. 10% fake rate 5% fake rate 1% fake rate

Classifier Score
(strange node)

0.5955 0.6320 0.6480

Signal Efficiency 47.2% 27.7% 7.5%

Reco (PF only) 10% fake rate 5% fake rate 1% fake rate

Classifier Score
(strange node)

0.4138 0.4516 0.5025

Signal Efficiency 17.7% 9.7% 2.0%

Reco (PF + K0s + K+-) 10% fake rate 5% fake rate 1% fake rate

Classifier Score (strange
node)

0.4952 0.5652 0.6344

Signal Efficiency 39.5% 24.8% 7.0%

Gen-level
Performance

26

Classifier score distribution that leads to these
ROC curves

*compare to Michele Selvaggi (TOP2021)

Performance at 10% fake rate is ~50%

While testing the

model on 200,000

events

Reco-level
Performance

27

Classification performance with only the particle flow
categories is very limited (though consistent with
literature)

While testing the

model on 200,000

events

Extending the classifier with input with information when reconstructing
K-shorts in the pi+pi- channel, performance improves only marginally
(likely due to their scarcity)

Extending the classifier with input with information discriminating charged
Kaons provides a sizable boost in performance (almost on par with all gen
categories)

Signal Efficiency vs |p| (Gen-level)

Increase in signal efficiency wrt |p|

in 10% and 5% working points

Little improvement in 1% working

point

28

10%

5%

1%

Signal Efficiency vs θ (Gen-level)

No signal efficiency dependence

on the polar angle, up to

forward/backward jets

29

10%

5%

1%

Drop in efficiency consistent with IDEA

acceptance as cuts were introduced on

particles before making the jet images

Gen-level Z Peak Reconstruction

30

● Z peak before tagging vs

after tagging both jets

● Ignored background and b/c

quark decays (for now)

10%

5% 1%

