Study of CP violation with $B_s \to \phi \phi \to K^+ K^- K^+ K^-$ **at FCC**

Based on work done with L.Oliver arXiv paper to appear very soon

R. Aleksan FCC workshop Liverpool February 8, 2022

- \triangleright Theoretical background and Motivation
- \triangleright Theoretical issues
- \triangleright Experimental study and sensitivities af FCC
- \triangleright Detector requirements
- \triangleright Conclusions

Theoretical background and motivation

In the Naive Factorization (**NF**) Scheme (i.e. with top-dominance in mixing and decay)

Very good for probing BSM Physics $\mathcal{A}(\bar{B}_S \to \phi\phi) \propto V_{tb}V_{ts}^*|\bar{M}$ $\mathcal{A}(\overline{B}_S \to B_S) \times \mathcal{A}(B_S \to \phi\phi) \propto (V_{tb}V_{ts}^*)^2 V_{ts}V_{tb}^* |M$ $\mathcal{I} \propto (V_{tb} V_{ts}^*)(V_{ts} V_{tb}^*) \propto |V_{tb} V_{ts}^*|^2$ $|\lambda^{NF}|=1$ ϕ^{NF}_{CKM} $\frac{NF}{CKM}=0$

In order to search for BSM physics, one need to evaluate the effect of charmed and up penguins

But to which extend can we rely on **NF** scheme (in particular with penguin modes) ?

Theoretical Issues (1/2)

In fact we cannot rely on NF: $\phi\phi$ is a Vector-Vector decay \Rightarrow polarized final states

$$
A_L = A[B \to V_1(0)V_2(0)] A_{\pm} = A[B \to V_1(\pm)V_2(\pm)]
$$

 $A_{\parallel} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(A_{+} + A_{-})$ $A_{\perp} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(A_{+}-A_{-})$ Due to V-A, A_L : A_{-} : $A_{+} = 1$: Λ_{QCD} m_b : Λ_{QCD} m_b 2 $f_{\parallel} \approx f_{\perp} \ll f_L$

But very off for

Theoretical Issues (2/2)

Instead we use the **QCD Factorization** scheme which takes proper account of penguins

- \triangleright More complete treatment of penguins, in particular for the Weak annihilation processes with helicity dependent corrections
- \triangleright includes NLO vertex, Hard scattering, penguins corrections ...
- \triangleright Coefficients $a_i^{p,h}$ (combination of Wilson coeff. C_i) depend on the helicity

CKM phases **depend on polarization** but all remain very small

Track p_T resolution :

Track ϕ , θ resolution :

Vertex resolution:

Vertex resolution:

Calorimeter resolution :

see <https://arxiv.org/abs/2107.02002>

Essentially no combinatorial background if excellent PID (see LHCb) else good PID + excellent momemtum resolution

Time dependent analysis

$$
\Gamma(\overline{B}_s \to \phi \phi) = |\langle \phi \phi | B_s \rangle|^2 \times e^{-\Gamma t} \{ \cosh \frac{\Delta \Gamma}{2} \bigodot (1 - 2\omega) A_{CP}^{dir} \cos \Delta m t
$$

+ $A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \bigodot (1 - 2\omega) A_{CP}^{mix} \sin \Delta m t \}$

$$
\Gamma(B_s \to \phi \phi) = |\langle \phi \phi | B_s \rangle|^2 \times e^{-\Gamma t} \{ \cosh \frac{\Delta \Gamma}{2} \bigodot (1 - 2\omega) A_{CP}^{dir} \cos \Delta m t
$$

+ $A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \bigodot (1 - 2\omega) A_{CP}^{mix} \sin \Delta m t \}$

$$
A_{CP}^{dir} = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \qquad A_{CP}^{mix} = -\frac{2Im\lambda_f}{1 + |\lambda_f|^2}, \qquad A_{\Delta \Gamma} = -\frac{2Re\lambda_f}{1 + |\lambda_f|^2}
$$

Can be obtained very precisely from $B_s \to D_S^- \pi^+$ see

<https://arxiv.org/abs/2107.02002>

$$
\delta(\omega)_{stat} = 1.4 \times 10^{-4}
$$

If no angular analysis reduced sensitivity since $\eta_{\bm \phi \bm \phi}^{eff} = 1 - 2 f_{\perp} \approx 0.416$

If angular analysis (tbd) the sensitivity is improved by factor ~2

 $A_{CP}^{mix}\approx -\eta_{\bm{\phi}\bm{\phi}}^{eff}\sin{\phi_{\bm{\phi}\bm{\phi}}}$

$\mathsf{Study\ of\ CP\ violation\ with\ } B_s \to \bm{\phi}\bm{\phi}\to K^+K^-K^+K^-$

Bounds on New Physics

New Physics is included in the Mixing with complex parameter Δ_{s} ($\mathbf{S}M \Rightarrow \mathbf{\Delta}_{s} = (\mathbf{1}, \mathbf{0}))$

$$
M_{12}^{s} = M_{12}^{SM,s} \Delta_s = M_{12}^{SM,s} \left(\text{Re } \Delta_s + i \text{Im } \Delta_s \right) = M_{12}^{SM,s} \mid \Delta_s \mid e^{i\phi_s^{\Delta}}
$$

\sqrt{N} : increase statistics

- **Increase Instant. Lumi**
- \triangleright Increase $\int L dt$ ⇒ 4 IP, more time @Z-pole
- **Increase acceptance and recons. Efficiency**
	- **Large tracking volume with many meas. points SVD + gaseous tracking detector**
- **Excellent momentum resolution**
	- **Very good point resolution but even more important**
	- **Very low material budget**
		- **gaseous tracking detector**

 $(1 - 2\omega)$: decrease wrong tagging fraction ω

- **Excellent vertex resolution**
	- **to identify secondary + tertiary vertices**
	- **Also mandatory to study B_s time dependence state-of-the-art pixelized vertex detector**
- **Excellent overall Part. Ident. (at least for e,µ,K) up to al least 25 GeV**
	- **Ideally specific PID system (but difficult to cover large p range**
	- **Alternative is de/dx with cluster counting + ToF gaseous tracking detector**

Parameters

 $\varphi_{\phi\phi}$

 $|\lambda_{\phi\phi}|$

 $\Delta \Gamma$

Angular dependent analysis needed

• **Test of QCD Factorization with precise measurement of** \boldsymbol{f}_L , \boldsymbol{f}_\parallel , \boldsymbol{f}_\perp

Errors scaling

 $\sqrt{\eta_{\phi\phi}(1-2\omega)\sqrt{N}}$

 $(1-2\omega)\sqrt{1}$

• **Polarization dependent CP violating phases** ⇒ **deeper test of CP sector (unprecedented) and better sensitivity to BSM physics Good angular resolution of tracking**

Conclusions

The mode $B_s \rightarrow \phi \phi$ very interesting

- \triangleright To test QCD Factorization
- \triangleright To test the CP sector with unprecedented precision

 \triangleright to search for New Physics

QCD Factorization predicts

$$
\left|\lambda_{\phi\phi}^{L}\right| \left(\left|\lambda_{\phi\phi}^{\parallel,\perp}\right|\right) \approx 1.01(1.004)
$$

$$
\phi_{\phi\phi}^{L}\left(\left|\phi_{\phi\phi}^{\parallel,\perp}\right|\right) \approx -0.01 \text{ rad }(-0.001 \text{ rad})
$$

FCC can measure the CP parameters very precisely $\triangleright \delta A_{CP}^{dir} \Rightarrow \delta |\lambda_{\phi\phi}| \pm 0.004$ and $\delta \phi_{\phi\phi} = \pm 0.009$ rad (≈ 0.005 rad) if angular analysis is carried out

The study of this mode establishes important constraints on the detectors

Higher integrated Luminosity (x 5-10)would be extremely useful

Additional Slides

 0.8

 $1.0\,$