Study of CP violation with $B_s \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$ at FCC

Based on work done with L.Oliver arXiv paper to appear very soon

R. Aleksan FCC workshop Liverpool February 8, 2022

- Theoretical background and Motivation
- Theoretical issues
- Experimental study and sensitivities af FCC
- Detector requirements
- Conclusions

Theoretical background and motivation

In the Naive Factorization (NF) Scheme (i.e. with top-dominance in mixing and decay)

 $\mathcal{A}(\bar{B}_{S} \to \phi\phi) \propto V_{tb}V_{ts}^{*}|\bar{M}|$ $\mathcal{A}(\bar{B}_{S} \to B_{s}) \times \mathcal{A}(B_{S} \to \phi\phi) \propto (V_{tb}V_{ts}^{*})^{2}V_{ts}V_{tb}^{*}|M|$ $\mathcal{I} \propto (V_{tb}V_{ts}^{*})(V_{ts}V_{tb}^{*}) \propto |V_{tb}V_{ts}^{*}|^{2}$ $|\lambda^{NF}| = 1$ $\phi_{CKM}^{NF} = 0$

In order to search for BSM physics, one need to evaluate the effect of charmed and up penguins

But to which extend can we rely on NF scheme (in particular with penguin modes)?

Theoretical Issues (1/2)

In fact we <u>cannot rely</u> on NF: $\phi\phi$ is a Vector-Vector decay \Rightarrow polarized final states

-		NF		
	$f_L = \Gamma_L / \Gamma$	$\textbf{0.378} \pm \textbf{0.013}$	CP (η=+1)	≈ 0.92
-	$f_{\parallel} = \Gamma_{\parallel} / \Gamma$	0.330 ± 0.016	CP (η=+1)	≈ 0.04
	$f_{\perp} = \Gamma_{\perp} / \Gamma$	0.292 ± 0.009	СР (η=−1)	≈ 0.04

$$A_L = A[B \rightarrow V_1(0)V_2(0)]$$

$$A_{\pm} = A[B \rightarrow V_1(\pm)V_2(\pm)]$$

$$A_{\parallel} = \frac{1}{\sqrt{2}} \left(A_{+} + A_{-} \right)$$

$$A_{\perp} = \frac{1}{\sqrt{2}} \left(A_{+} - A_{-} \right)$$

Due to V-A, $A_{L}: A_{-}: A_{+} = 1: \frac{\Lambda_{QCD}}{m_{b}}: \left(\frac{\Lambda_{QCD}}{m_{b}} \right)^{2}$

$$\implies f_{\parallel} \approx f_{\perp} \ll f_{L}$$

But very off for f_L

Theoretical Issues (2/2)

Instead we use the **QCD Factorization** scheme which takes proper account of penguins

- More complete treatment of penguins, in particular for the Weak annihilation processes with helicity dependent corrections
- includes NLO vertex, Hard scattering, penguins corrections ...
- Coefficients $a_i^{p,h}$ (combination of Wilson coeff. C_i) depend on the helicity

PDG			QCDF	$\left \lambda_{\phi\phi}^{L,QCDF}\right \approx 1.01$
$f_L = \Gamma_L / \Gamma$	$\textbf{0.378} \pm \textbf{0.013}$	CP (η=+1)	≈ 0.370	$\phi_{\phi\phi}^{L,QCDF} \approx -0.5^{\circ}$
$f_{\parallel} = \Gamma_{\parallel} / \Gamma$	0.330 ± 0.016	CP (η=+1)	≈ 0.315	
$f_{\perp} = \Gamma_{\perp} / \Gamma$	0.292 ± 0.009	CP (η=-1)	≈ 0.315	$\left \downarrow \longrightarrow \left \lambda_{\phi\phi}^{\parallel,QCDF} \right = \left \lambda_{\phi\phi}^{\perp,QCDF} \right \approx 1.004 $
Br	$(1.87 \pm 0.15)10^{-5}$		2.1 10 ⁻⁵	$\phi_{\phi\phi}^{\parallel,QCDF} = \phi_{\phi\phi}^{\perp,QCDF} \approx 0.05^{\circ}$

CKM phases depend on polarization but all remain very small

Detector response is parametrized

Acceptance	:
------------	---

Track p_T resolution :

Track ϕ, θ resolution :

Vertex resolution :

Vertex resolution :

Calorimeter resolution :

$ \cos \theta $	<	0.95
$rac{\sigma(p_T)}{p_T^2}$	=	$2. \times 10^{-5} \oplus \frac{1.2 \times 10^{-3}}{p_T \sin \theta}$
$\sigma(\phi, \theta) \ \mu \text{rad}$	=	$18 \oplus \frac{1.5 \times 10^3}{p_T \sqrt[3]{\sin \theta}}$
$\sigma({ m d_{Im}})~\mu{ m m}$	=	$1.8 \oplus \frac{5.4 \times 10^1}{p_T \sqrt{\sin \theta}}$
$< \sigma(d_{Im}) >$	\simeq	$10 \ \mu m$
$\frac{\sigma(E)}{E}$	=	$rac{5 imes10^{-2}}{\sqrt{E}}~\oplus~5 imes10^{-3}$

	unit	value
acceptance	%	86
$\sigma(m_{\phi})$	MeV	~1.5
$\sigma(m_{B_s})$	MeV	~5.7
$\sigma(d_{B_S}^{flight})$	μm	~20.

see https://arxiv.org/abs/2107.02002

Essentially no combinatorial background if excellent PID (see LHCb) else good PID + excellent momentum resolution

Time dependent analysis

$$\begin{split} \Gamma(\overline{B}_s \to \phi \phi) &= | < \phi \phi | B_s > |^2 \times e^{-\Gamma t} \{ \cosh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{dir} \cos \Delta m t \\ &+ A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{mix} \sin \Delta m t \} \\ \Gamma(B_s \to \phi \phi) &= | < \phi \phi | B_s > |^2 \times e^{-\Gamma t} \{ \cosh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{dir} \cos \Delta m t \\ &+ A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{mix} \sin \Delta m t \} \end{split}$$
$$\begin{aligned} A_{CP}^{dir} &= \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} , \qquad A_{CP}^{mix} &= -\frac{2Im\lambda_f}{1 + |\lambda_f|^2} , \qquad A_{\Delta \Gamma} = -\frac{2Re\lambda_f}{1 + |\lambda_f|^2} \end{split}$$

$\omega = wrong \ tagging = 0.25$				
	LEP	BaBar	LHCb	
$\epsilon (1-2\omega)^2$	25 - 30%	30%	6%	

Can be obtained very precisely from $B_s \rightarrow D_s^- \pi^+$ see

https://arxiv.org/abs/2107.02002

$$\delta(\omega)_{stat} = 1.4 \times 10^{-4}$$

If no angular analysis reduced sensitivity since $\eta_{\phi\phi}^{eff} = 1 - 2f_{\perp} \approx 0.416$

 $\lambda_{\phi\phi}^{(k)} = \left(\frac{q}{p}\right)_{p} \frac{A(B_s \to \phi\phi, k)}{A(B_s \to \phi\phi, k)} = \eta_k \mid \lambda_{\phi\phi}^{(k)} \mid e^{-i\phi_{\phi\phi}^{(k)}} \qquad A_{CP}^{mix} \approx -\eta_{\phi\phi}^{eff} \sin\phi_{\phi\phi}$

If angular analysis (tbd) the sensitivity is improved by factor ~2

Bounds on New Physics

New Physics is included in the Mixing with complex parameter Δ_s ($SM \Rightarrow \Delta_s = (1, 0)$)

$$M_{12}^s = M_{12}^{SM,s} \Delta_s = M_{12}^{SM,s} \left(\operatorname{Re} \Delta_s + i \operatorname{Im} \Delta_s \right) = M_{12}^{SM,s} \mid \Delta_s \mid e^{i\phi_s^{\Delta}}$$

\sqrt{N} : increase statistics

- Increase Instant. Lumi
- ➢ Increase $\int Ldt \Rightarrow$ 4 IP, more time @Z-pole
- Increase acceptance and recons. Efficiency
 - Large tracking volume with many meas. points
 ⇒ SVD + gaseous tracking detector
- Excellent momentum resolution
 - Very good point resolution but even more important
 - Very low material budget
 - ⇒ gaseous tracking detector

 $(1-2\omega)$: decrease wrong tagging fraction ω

- Excellent vertex resolution
 - to identify secondary + tertiary vertices
 - Also mandatory to study B_s time dependence
 state-of-the-art pixelized vertex detector
- **Excellent overall Part. Ident. (at least for e,μ,K) up to al least 25 GeV**
 - Ideally specific PID system (but difficult to cover large p range
 - Alternative is de/dx with cluster counting + ToF
 ⇒ gaseous tracking detector

 $\phi_{\phi\phi}$

 $\lambda_{\phi\phi}$

 $\Delta\Gamma$

Angular dependent analysis needed

- Test of QCD Factorization with precise measurement of $f_{L^{\prime}}, f_{\parallel}, f_{\perp}$
- Polarization dependent CP violating phases ⇒ deeper test of CP sector (unprecedented) and better sensitivity to BSM physics
 ⇒ Good angular resolution of tracking

Parameters Errors scaling

Conclusions

The mode $B_s \rightarrow \phi \phi$ very interesting

- To test QCD Factorization
- To test the CP sector with unprecedented precision

to search for New Physics

QCD Factorization predicts

$$\begin{aligned} \left| \lambda_{\phi\phi}^{L} \right| \left(\left| \lambda_{\phi\phi}^{\parallel,\perp} \right| \right) &\approx 1.01(1.004) \\ \phi_{\phi\phi}^{L} \left(\left| \phi_{\phi\phi}^{\parallel,\perp} \right| \right) &\approx -0.01 \text{ rad } (-0.001 \text{ rad}) \end{aligned}$$

FCC can measure the CP parameters very precisely $\gg \delta A_{CP}^{dir} \Rightarrow \delta |\lambda_{\phi\phi}| \pm 0.004 \text{ and } \delta \phi_{\phi\phi} = \pm 0.009 \text{ rad} (\approx 0.005 \text{ rad}) \text{ if}$ angular analysis is carried out

The study of this mode establishes important constraints on the detectors

Higher integrated Luminosity (x 5-10)would be extremely useful

Additional Slides

