Measurement of γ_s from B⁺ to D⁰ K⁺ and reconstruction of K_s decays

R. Aleksan (CEA/IRFU), L. Oliver (IJCLab), E.Perez (CERN)

5th FCC Physics Workshop, Feb 7-11, 2022

The (b,s) unitarity triangle

Six triangular relations from unitarity of V_{CKM} . Among them : the "(b,s)" triangle.

At FCC-ee, all angles of the (b,s) triangle can be measured directly

 β_{s} : via $B_{s} \rightarrow J/\psi \phi$ α_{s} : B_{s} to $D_{s} K$ γ_{s} : B^{+} to $D^{0} K^{+}$

See R. Aleksan, L. Oliver, E.P: <u>2107.02002</u> and <u>2107.05311</u>

These processes provide good benchmarks for detector performance:

- Excellent tracking performance (mass resolutions)
- Excellent EM resolution (modes with neutrals)
- K/Pi separation in a wide p range
- Ks reconstruction (crucial for many flavour analyses)
 - Crucial for many flavour analyses
 - For example for measuring γ_s

$\gamma_s = \arg\left(-\frac{V_{cb}^* V_{cs}}{V_{cb}^* V_{cs}}\right)$ Measurement of γ_{s} : B⁺ to D⁰ K+ Direct CP violation in decays of B+ to D^0 (\overline{D}^0) K⁺ : well-known method to measure the γ angle of the "usual" UT. Can be applied too to measure γ_s . B^+ With a final state f that is accessible to both D^0 and \overline{D}^0 : interference, and CPV. $D^0(\overline{D}^0) \rightarrow K^+K^-(\eta_{CP} = 1) \text{ or } K_s \pi^0(\eta_{CP} = -1): \Phi_{CKM} = \pi + \gamma_s$ $\Gamma (B^+ \rightarrow f_{(D)} K^+) \neq \Gamma (B^- \rightarrow f_{(D)} K^-)$. Asymmetry \mathcal{A}_{CP} given by : R already known to 5%, $\pm 2\mathcal{R}\sin\Delta\sin\gamma_s \qquad \qquad \mathcal{R}^2 = \frac{Br(B^+ \to D^0K^+)}{Br(B^+ \to \overline{D^0}K^+)}$ can be much improved with D0 semi-leptonic $1 + \mathcal{R}^2 \mp 2\mathcal{R}\cos\Delta\cos\gamma_s$ decays Δ = strong phase difference. PDG: -130° ± 5° Combination of \mathcal{A}^+_{CP} (K⁺ K⁻) and \mathcal{A}^-_{CP} (K_s π^0) gives

 Δ and γ_{s} (8-fold ambiguity)

 $\begin{array}{l} {\sf BR}\;({\sf B}+\to\overline{{\sf D}}{}^0\;{\sf K}+\;)\sim\;3.6\;10^{\,-\,4}\\ {\sf BR}\;({\sf B}+\to{\sf D}{}^0\;{\sf K}+\;)\sim\;3.6\;10^{\,-\,6}\\ {\sf BR}\;({\sf D}{}^0\to{\sf K}{}^+\;{\sf K}{}^-\;)\sim 4.1\;10^{\,-3}\\ {\sf BR}\;({\sf D}{}^0\to{\sf K}{}_{\rm s}\;\pi{}^0)\sim 1.2\;10^{\,-2} \end{array}$

Asymmetries are sizable. E.g. with $\Delta = -130^{\circ}$ and $\gamma_{s} = 108^{\circ}$:

 $\mathcal{A}^+_{CP}(K^+K^-) \approx -15\%$ and $\mathcal{A}^-_{CP}(K_s \pi^0) \approx 14\%$

with expected statistical uncertainties of ~ 0.1% (absolute, accounting for approx. acceptance and efficiencies), which corresponds to $\sigma (\gamma_s)$ of 2.8^o (uncertainty on γ_s depends on the value of Δ – ranges between < 1^o to a few deg.) Possible improvements with additional modes, e.g. $D \rightarrow K_s \eta$, B⁺ \rightarrow D K^{*+}

Measurement of γ_s to $1^{\circ} - 2^{\circ}$ within reach.

Signal reconstruction

- B⁺ → (K⁺ K⁻)_D K⁺ : should be quite easy thanks to excellent mass resolution
 - $\sigma~\sim 6$ MeV on the B+ mass
 - $B^+ \rightarrow (\ K_s \ \pi^0 \)_D \ K^+$: much more challenging
 - Worse mass resolutions
 - Displaced pion tracks from K_s decay

30% of the K_s decay at > 50 cm from the IP

Need to reconstruct the Ks up to O(1m) from the IP: ϵ (acceptance) x ϵ (fiducial) = 85% x 87% = 74%

With acceptance = | cos theta | < 0.95

5

Simulation setup

Signal events $B^+ \rightarrow (K_s \pi^0)_D K^+$: (EvtGen + Pythia) passed through Delphes

- latest version of Delphes: uncertainties of track parameters are determined also for displaced tracks (TrackCovariance module, Franco Bedeschi)
- Detector = baseline IDEA unless specified otherwise
- Edm4hep events, FCCAnalysis framework

Validation: take the reco'ed tracks that are MC-matched with the two pions from the Ks decay. For central tracks ($|\eta| < 0.9$), look at the resolution of track parameters in bins of Rxy, the MC radial position of the Ks decay vertex. Examples:

Resolutions for displaced tracks

- Momentum resolution worsens by O(3) between "R > 50 cm" and "R > 1 m", and by O(7) between "prompt" (R < 30 cm) and "R > 1 m"
 - Note large MS component in "prompt" bin
- Resolution on d0 or z0 : worsens dramatically as soon as the track makes no hit in the Si layers (single hit resolution 3 μm -> 100 μm)
- Qualitatively consistent with expectations (e.g. Drasal/Riegler, NIM A910, 127)

$K_s \rightarrow \pi^+\pi^-$ vertex reconstruction (perfect seeding)

Vertex fit from the two reco'ed tracks that are MC-matched with the pion tracks. Vertex fitter: code from Franco Bedeschi (in Delphes and in FCCAnalyses).

 As soon as no VXD hit on the track: distribution of the χ² of the vertex fit has large tails. Suspect that the starting value of the fit is badly off.

 After cutting out the tail (e.g. χ² < 20): pulls of the fitted vertex are nicely Gaussian with σ ≈ 1 in all displacement bins.

Ks -> pi pi vertex reconstruction (perfect seeding)

L _{xyz} bin	< L >	Average σ
L < 30 cm	12 cm	48 mum
50 < L < 80 cm	63 cm	0.85 mm
80 < L < 120 cm	1 m	1.25 mm
120 < L < 160 cm	1.4 m	1.92 mm

Average sigma = weighted average of the sigma's of the two Gaussians, weights = normalisations.

Vertex mass of Ks -> pi pi (perfect seeding)

L _{xyz} bin	< L >		Average σ(M)
L < 30 cm	12 cm	3.7 GeV	0.38 MeV
50 < L < 80 cm	63 cm	6.1 GeV	0.5 MeV
80 < L < 120 cm	1 m	7.1 GeV	0.8 MeV
120 < L < 160 cm	1.4 m	7.8 GeV	1.3 MeV

1st version of K_s reconstruction algorithm developed in FCCAnalyses, based on DELPHES samples. Two main steps :

- Identify the non-primary tracks
 - Some details on next slide
- Using the non-primary tracks: build all 2-track combinations (no PID used so far) and select combinations consistent with a Ks decay :
 - Fit the 2 tracks to a common vertex
 - Propagate the tracks to this vertex
 - Build the vertex mass, using m = pion mass for each leg
 - Restrict to opposite-sign pairs and apply some cuts on the vertex χ^2 and on the vertex mass, based on what is seen from perfect seeding :

-
$$\chi^2 < 20$$

- Loose mass cut: 0.48 GeV < M < 0.52 GeV

Performance of the Ks reconstruction: efficiency

Use the association of the reco'ed legs to the MC particle to determine whether the K_s candidate is matched or not to a MC K_s $\rightarrow \pi\pi$. Non-matched candidates = fakes.

Drop in efficiency in L = 35 cm (last VXD barrel) - 70 cm (last VXD disk): when one looses hits in VXD. Cut on χ^2 less efficient.

Selection efficiency :

78% - 82% of the K_s → ππ decays (from B+) that are inside the acceptance, depending on the mass cut.

Performance of the Ks reconstruction: fakes (in inclusive Z -> had sample)

- As expected, many fakes in the vicinity of the IP
- Above 3-4 cm: Fake fraction per-cent level up to about 1m, dominated by $\Lambda \to \pi \, p$
 - Lifetime (Λ) ~ 3x larger than that of the Ks
 - Should be easily reduced by PID, or by rejecting candidates with mass close to M(Λ) when one leg is assigned the proton mass.

2/7/22

Origin of fakes

Fakes at distance < 3 cm from the IP

- In 70% of cases, the two legs do not come from the same paren
- Random combinations of pions or K tracks from the decays of rhos, omegas, Ds, etc

Fakes at distance > 3 cm from the IP :

- In 85% of cases, the two legs do come from the same parent (98% at L > 50 cm)
- Usually (p, pi) pairs from Lambda decays
- And a few Ks -> Pi e/mu nu
- Note: I chose to not count as "fakes" the decays Ks -> Pi+ Pi- gamma that pass the selection cuts.

Alternative tracker choice: CLD

Similar cut (5 hits) in the track reconstruction in CLD Full Simulation.

Determine performance for tracks with Nhits \geq 4 and Nhits \geq 5.

Only 6 layers in R range 12.7 cm – 2.1 m

Default Delphes CARD: demands at least 6 hits for a track to be accepted.

Results in zero efficiency for central tracks, for displacements > 13 cm.

2/7/22

Alternative tracker choice: CLD, demand 5 hits on the tracks

Vertex resolutions (with χ^2 < 20) and effi. of χ^2 cut:						
Lxyz bin	IDEA	CLD	IDEA	CLD		
L < 30 cm	48 mum	60 mum	100%	100%		
50 < L < 80 cm	0.85 mm	1.3 mm	75%	95%		
80 < L < 120 cm	1.25 mm	1.5 mm	74%	92%		

Mass resolutions:

Lxyz bin	IDEA	CLD
L < 30 cm	0.38 MeV	1.8 MeV
50 < L < 80 cm	0.5 MeV	2.5 MeV
80 < L < 120 cm	0.8 MeV	3.3 MeV

Vertex resolutions are comparable. IDEA: tails in χ^2 of the vertex fit when no VXD hit. CLD mass resolution worse by a factor of 3-4.

Performance, CLD (5 hits tracks)

- Clear steps in efficiency when one looses a layer
- Efficiency for a fake fraction at the percent level: 47% (blue) or 58% (red).

Performance, CLD (4 hits tracks)

• Efficiency for a fake fraction at the percent level: 56% (blue) or 70% (red).

- Latest version of Delphes allows far displaced tracks and vertices to be studied.
- Baseline IDEA detector provides an efficiency of O(80%) to reconstruct the K_s to $\pi\pi$ decays in the B⁺ \rightarrow (K_s π^0)_D K⁺ decay chain.
 - Confirms the assumption that was made in the preprint
- Baseline IDEA detector can reconstruct Ks with an efficiency > 50% for displacements up to 1.5 m from the IP
 - L > 1 m : very relevant also for e.g. LLPs. Indicative performance from Ks study (but depends on #tracks, their momentum, opening angle, etc).
 Code developed for the Ks can probably be re-used to study other cases.
- Full Silicon tracker : performance is limited by the small number of layers. For Ks from B+ decays, efficiency of O(50-60%). Efficiency is limited to L < 50 – 70 cm, depending on the track criteria.

Backup

21

Is due to the correlation of L with the Ks energy. In the small L bins, the Ks have a lower energy, hence the pion tracks suffer more from multiple scattering.

Increase of efficiency at L = 1 - 1.2 m?

∠J

Track resolutions in 700 – 1000 vs 1000 – 1300, central tracks

IDEA, w/o any chi2 cut

Relaxing the chi2 cut does not improve the efficiency when using a mass window that limits the fakes - fits with a very bad chi2 give a crazy vertex, hence the vertex mass can not be close to the Ks mass.

Leads to a lower purity.

Performance, CLD (3 hits tracks)

Overall efficiency for a fake rate at the percent level: 62% (blue), 78% (red) But 3-hits tracks is probably not realistic, would have no redundancy, many fake tracks...