

Status of the IDEA software

Walaa Elmetenawee INFN and University of Bari, Italy

On behalf of the IDEA software group

The IDEA detector at FCC-ee colliders

IDEA detector is Innovative detector designed for experiments at future e⁺e⁻ colliders.

□ IDEA consists of:

- ➤ A silicon pixel vertex detector.
- A large-volume extremely-light drift wire chamber.
- > A layer of silicon micro-strip detectors.
- A thin low-mass superconducting solenoid coil (optimized at 2 T) to maximize luminosity.
- A preshower detector.
- A dual read-out calorimeter.
- Muon chambers inside the magnet return yoke.

W. Elmetenawee

The IDEA tracking system

outer? 2 single Si pixel (20 μ m x 20 μ m) layers of 0.3% X₀ **outer**? 2 single Si pixel (50 μ m x 50 μ m) layers of 0.5% X₀ forward: 4 single Si pixel (50 μ m x 50 μ m) layers of 0.3% X₀

- Solenoid: 2 T, length = 5 m, r = 2.1-2.4 m, 0.74 X0, $0.16 \lambda @ 90^{\circ}$.
- Si Wrapper:2 layers of μ-strips (50 μm x 1 mm) both barrel and forward regions.
- ✓ DCH: 56448 (~1.2 cm) cells He based gas mixture (90% He −10% i-C4H10).

IDEA: Material vs. $cos(\theta)$

W. Elmetenawee

The IDEA drift chamber

New concept of construction allows to

wire cage

The wire net created by the combination of + and – orientation giving a high ratio of field to sense wires, and a high density of wires creating a more uniform equipotential surface.

sense wires:	20 mm diameter W(Au) => 56448 wires
field wires:	40 mm diameter Al(Ag) => 229056 wires
f. and g. wires:	50 mm diameter Al(Ag) => 58464 wires
	343968 wires in total

reduce material to $\approx 10^{-3} X_0$ for the barrel and to a few x 10⁻² X₀ for the end-plates.

High wire number requires a non standard wiring procedure and needs a feed-throughless wiring system. The novel wiring procedure developed and used for the construction of the ultra-light MEG-II drift chamber must be used.

MEG-II: muon to e-gamma search experiment at Paul ScherrerInstitut-"The design of the MEG II experiment", <u>Eur.</u> <u>Phys. J. C (2018) 78:380 -https://doi.org/10.1140/epjc/s10052-018-5845-6</u>

W. Elmetenawee

IDEA Drift Chamber Full Simulation Pattern Recognition & Tracking Performance

Transverse Momentum Resolution

N good Hit DCH vs Theta

Assumed: $\sigma_d = 100 \ \mu m$ and (conservative for Si detector resolution) using a simple model $\sigma_{Si} = \text{pitch}/\sqrt{12} \ \mu m$

efficiency to find 0.6nhits at 1 turn(P>1GeV) over all tracks

Si-Wrapper not yet included

0

0.5

1

cos theta

in the PR algorithm

W. Elmetenawee

FCC Physics workshop, 7-11 Feb 2022

-0.5

1 9.995 (آپر الزن 0.99

0.985

0.98

0.975

0.97

0.965

0.96 0.955 0.95

-1

IDEA Drift Chamber simulation – Delphes model

Analytic model to evaluate full covariance matrix

black point: Full simulation
red line: analytic model with Si resolution as Full sim.
blue line: analytic model with improved Si resolutions ⁽¹⁾

⁽¹⁾ Vertex:

- inner 3x3 μm
- outer/forward 7x7 μm

Si wrapper: 7x90 µm

IDEA Drift Chamber simulation - Cluster Counting/Timing

Principle: In He based gas mixtures the signals from each ionization act can be spread in time to few ns. With the help of a fast read-out electronics they can be identified efficiently.

• By counting the number of ionization acts per unit length (dN/dx), it is possible to identify the particles (P.Id.) with a better resolution w.r.t the dE/dx method.

dE/dx

Truncated mean cut (70-80%) reduces the amount of collected information. n = 112 and a 2m track at 1 atm give $\sigma \approx 4.3\%$

 $dN_{cl}/dx \\ \delta_{cl} = 12.5/cm \text{ for He/iC4H10} = 90/10 \text{ and a } 2m \\ track give \sigma \approx 2.0\%$

- Cluster Counting/Timing in DCH for good P.Id. Performance.
- Expected excellent K/π separation over the entire range except 0.85<p<1.05 GeV (blue lines).
- Could recover with timing layer.

W. Elmetenawee

IDEA Drift Chamber simulation - Cluster Counting/Timing

- A simulation of the ionization process in 1 cm long side cell of 90% He and 10% iC4H10has been performed in Garfield++ and Geant4.
- Geant4 software can simulate in details a full-scale detector, but the fundamental properties and the performances of the sensible elements have to be parameterized or an "ad hoc" physics model has to be implemented.
- Three different algorithms have been implemented to simulate in Geant4, in a fast and convenient way, the number of clusters and clusters size distributions, using the energy deposit provided by Geant4.

We are assuming a cluster counting efficiency of 100%.

To be ported inside the full detector simulation

W. Elmetenawee

Dual Readout Calorimeter A benchmark geometry

A benchmark IDEA Calo implementation:

- Towers are G4Trap() physical volumes with slightly different shapes changing with θ.
- Fibers are 1mm diameter G4Tubs(), 0.5 mm of absorber material (copper) between two adjacent fibers is considered.
- Barrel Inner length: 5m Outer diameter: 9 m @ 90°.
- 2 m long copper based towers: ~ 8.2 λ
- 36 rotation around z axis
- Number of Towers in the barrel: $40 \times 2 \times 36 = 2880$
- Number of Towers in per endcap: 35 × 36= 1260

Dual Readout Calorimeter Proof of concept

Geant4 indications on the expected performance (selected results):

- > 10% 15 % / \sqrt{E} EM energy resolution.
- > 25% 30 % / \sqrt{E} energy resolution for single hadrons (including neutral hadrons).
- energy resolution for jets at 50 GeV.
- Sub-percent linearity in the FCCee energy ranges for e^{-}/γ , hadrons and jets.

W. Elmetenawee

Dual Readout Calorimeter Jet resolution in the IDEA Crystal option

Jet energy resolution and linearity as a function of the jet energy (from $e^+e^- \rightarrow jj$ events at different center-of-mass-energies) for:

- ✓ Crystals + IDEA Calo w/o DRO
- ✓ Crystals + IDEA Calo w/ DRO
- ✓ Crystals + IDEA Calo w/ DRO + pPFA

pPFA leads to a sensible improvement in jet resolution using dual-readout information from crystals and fibers \rightarrow 3-4% for jet energies above 50 GeV, within the most physics requirements at Higgs factories.

See <u>here</u> the talk by Marco at this workshop for more details.

W. Elmetenawee

12

Preshower/Muon detector and simulation

- Pre-shower and the Muon Systems are designed with the µ-RWELL technology.
- A μ-Rwell essentially consists of:
 - Patterned Kapton foil (amplification stage).
 - Resistive layer sputtered on the back of the Kapton foil to quench the multiplication and avoid sparks (DLC = Diamond Like Carbon).
 - Patterned PCB for readout.
- IDEA's Muon detector would have in total: 2800 m² total; 4M channels; 3 stations.

Pre-shower Oct.'21 TB	Muon detector
Tiles: 50x50 cm ² with X-Y readout Strip length: 50cm Strip pitch: 0.4mm Input FEE capacity ~ 70 pF	Tiles: 50x50 cm ² with X-Y readout Strip length: 50cm Strip pitch: 1.5mm Input FEE capacity ~ 270 pF
TOT: 330 m², 1.5×10 ⁶ channels	TOT: 4000 m², 5×10 ⁶ channels

See <u>here</u> the talk by Giulio at this workshop for more details.

Visualization of a μ -RWELL detector in Geant4

IDEA Muon detector dimensions

W. Elmetenawee

Geant4 full simulation of IDEA

- The standalone code was adapted for compilation on Key4hep stack.
- It works with the latest key4hep stack on CERN lxplus machines (source/cvmfs/sw.hsf.org/key4hep/setup.sh)

- key4hep-stack/2021-11-26:
- gcc8.3.0
- geant4-10.7.2
- clhep-2.4.4.0
- root-6.24.06
- genfit/02-00-00 (on the stack)
- rome master

W. Elmetenawee

Geant4 full simulation of IDEA

- □ A full standalone geant4 simulation of the IDEA Silicon Vertex (and Si wrapper), Drift Chamber, DR Calorimeter (and Muon system).
 - DCH is simulated at a good level of geometry details, including detailed description of the endcaps; hit creation and track reconstruction.
 - SVX and Si wrapper are simulated as simple layer or overall equivalent material.
 - Dual Readout calorimeter is simulated, combining DR fibers and crystals (in a fully compensating segmented calorimeter.
 - Muon detector: To be inserted in official simulation (Endcap in preparation).

Geant4 full simulation of IDEA

The integration of the Calorimeter geometry description with IDEA Silicon Vertex (SVX), Drift Chamber (DCH) has been performed.

IDEA Drift Chamber simulation Migration to EDM4hep and Key4hep

Goal: port the simulation and the algorithms to a common FCC framework to develop studies, physics analysis and algorithms in the standard/final environment.

DD4hep geometry migration for the DR calorimeter

- ✓ DD4hep is a main framework for detector description
- ✓ It is a first step to migrate to key4hep, common SW stack for FCC, ILC, CLIC, CEPC
- ✓ An IDEA DR-Calo description was implemented in DD4hep [git]
- \checkmark To be coupled with a DD4hep description of the IDEA Drift Chamber

See <u>here</u> the talk by <u>lacopo</u>, <u>Roberto</u>, <u>Sang</u> at this workshop for more details.

W. Elmetenawee

Conclusions

- Geant4 has been used to simulate the tracking system for IDEA:
 - the track fitting performance of the whole system (SVX+DCH+SWR+PSHW) are compatible with the preliminary estimations.
 - data output conversion to EDM4Hep has been developed.
 - reasonable algorithms to simulate the Ionization Clusters by using the Geant4 data have been developed.
- Geant4 has been used to simulate a dual-readout calorimeter concept for IDEA providing good indications on the possibility of:
 - reconstructing , hadrons and jets with superior HAD resolution and linearity.
 - combining DR fibers and crystals (in a fully compensating segmented calorimeter).
 - using proto-PF approach improving the jet energy measurements.
- Migration of the DR Calo simulation to the key4hep SW stack is at an advanced level (DD4hep and EDM4hep).
- The full IDEA simulation description (SVX+DCH+SWR+PSHW+DRCALO) are available to be uploaded to the FCC SW soon and start studies with full IDEA description.

Machine environment for physics at FCC-ee colliders

It is optimised to study with high precision the Z, W, Higgs and top particles, with samples of 5 × 10¹² Z bosons, 10⁸ WW pairs, 10⁶ Higgs bosons and 10⁶ top quark pairs.

e⁺e⁻ Collider Luminosities/IP

Different running conditions depending on beam energy:

≻High-intensity machine at the Z-pole, high-current machine at the top.

> Bunch spacing ranging from 20 ns (Z) to 7 μ s (top).

>Large (30 mrad) crossing angle between beams + low beam emittance \Rightarrow detector magnetic field 2 T max.

➢ Machine-detector interface structure (large angle + shielding + compensating magnets + luminometer) limit detector acceptance to ±150 mrad (100 mrad for calo).

W. Elmetenawee

Physics requirements: Higgs, EWK, and Heavy Flavour

Higgs boson sector

• Higgs sector definition imposes strict requirements on hadronic resolution, tracking and vertexing.

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$\mathrm{BR}(H \to \mu^+ \mu^-)$	Tacker	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \to b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q\bar{q}, VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\% \text{ (GeV)}$

> EWK

- Extreme definition of detector acceptance.
- Extreme EM resolution (crystals).

Heavy Flavour:

PID to accurately classify final states and flavour tagging.