Path to FCC-ee 0.01% Theoretical Luminosity Precision

B.F.L. Ward

Baylor University, Waco, TX, USA

Feb. 9, 2022

in collaboration with

S. Jadach, W. Placzek, M. Skrzypek, S. A. Yost

- see Phys. Lett. B 790 (2019) 314, Eur. Phys. J. C 81 (2021) 1047

LEP update 2018(2019)

Type of correction / Error	1999	Update 2018
(a) Photonic $O(L_e\alpha^2)$	0.027% [5]	0.027%
(b) Photonic $O(L_e^3 \alpha^3)$	0.015% [6]	0.015%
(c) Vacuum polariz.	0.040% [7,8]	0.013% (0.011%(JJ))
(d) Light pairs	0.030% [10]	0.010% [18, 19]
(e) s-channel Z-exchange	0.015% [11, 12]	0.015%
(f) Up-down interference	0.0014% [27]	0.0014%
(f) Technical Precision		(0.027)%
Total	0.061% [13]	(0.038% (0.037%(JJ))

- Implied Upgrade of BHLUMI under Review in US DOE OHEP Funding Program
- Recent Work by Banerjee *et al.*, PLB 820 (2021) 136547, contacts

Type of correction / Error	Update 2018	FCCee forecast
(a) Photonic $O(L_e^4 \alpha^4)$	0.027%	0.6×10^{-5}
(b) Photonic $O(L_e^2 \alpha^3)$	0.015%	0.1×10^{-4}
(c) Vacuum polariz.	0.014% [25]	0.6×10^{-4}
(d) Light pairs	0.010% [18, 19]	0.5×10^{-4}
(e) Z and s -channel γ exchange	0.090% [11]	0.1×10^{-4}
(f) Up-down interference	0.009% [27]	0.1×10^{-4}
(f) Technical Precision	(0.027)%	0.1×10^{-4}
Total	0.097%	1.0×10^{-4}

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Bhabha scattering at NNLO with next-to-soft stabilisation

- ^a Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- b Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- d Institute for Particle Physics Phenomenology, University of Durham, South Road, Durham DHI 3LE, United Kingdom

ARTICLE INFO

Article history:
Received 21 June 2021
Received in revised form 12 July 2021
Accepted 21 July 2021
Available online 24 July 2021
Editor: A. Ringwald

ABSTRACT

A critical subject in fully differential QED calculations originates from numerical instabilities due to small fermion masses that act as regulators of collinear singularities. At next-to-next-to-leading order (NNLO) a major challenge is therefore to find a stable implementation of numerically delicate real-virtual matrix elements. In the case of 8habha scattering this has so far prevented the development of a fixed-order Monte Carlo at NNLO accuracy, in this paper we present a new method for stabilising the real-virtual matrix element. It is based on the expansion for soft photon energies including the non-inversal subleading term calculated with the method of regions. We have applied this method to 8habha scattering to obtain a stable and efficient implementation within the McMults framework. We therefore present for the first time fully differential results for the photonic NNLO corrections to 8habha scattering.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY licenses (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³

References on Virtual Correction to Bremsstrahlung at $O(\alpha^2L)$

- 1. S. Jadach et al., Phys. Lett. B 377 (1996) 168.
- 2. S. Jadach et al., Phys. Lett. B 450 (1999) 262.
- 3. S. Jadach et al., Comput. Phys. Commun. 70 (1992) 305.
- 4. S. Jadach et al., Comput. Phys. Commun. 102 (1997) 229.
- 5. S. Jadach et al., Acta Phys. Pol. B30 (1999) 1745.

Comparisons:

- 1. Exact $O(\alpha^2 L) => O(\alpha^2/\pi^2) \sim 5.4 \times 10^{-6}$ is missing
- 2. BaBaYaga vs Banerjee et al.:

$$E_{min} = 408 \text{ MeV}, 20^{\circ} < \theta_{\pm} < 160^{\circ}, \zeta_{max} = 10^{\circ}$$

Agreement: 0.07% (technical?)

Soft expansion:
$$\lim_{\xi \to 0} \xi^2 \mathcal{M}_{n+1}^{(\ell)} = \mathcal{E} \mathcal{M}_n^{(\ell)} + \xi \mathcal{M}_{n+1} + \dots$$

next-to-soft term

Comparisons:

1. BHLUMI: $O(\alpha^2 L)$ term implemented => $O(\alpha^2/\pi^2)$ is missing in $\bar{\beta}_{1U}^{(r)}$, $\bar{\beta}_{1L}^{(r)}$ $\sigma^{(r)} = \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \frac{1}{n!} \frac{1}{n'!} \int \frac{d^3 p_2}{p_2^0} \int \frac{d^3 q_2}{q_2^0} \prod_{j=1}^n \int \frac{d^3 k_j}{k_j^0} \bar{S}_p(k_j) \prod_{l=1}^n \int \frac{d^3 k_l'}{k_l'^0} \bar{S}_q(k_l')$

$$\times \delta^{(4)} \left(p_1 - p_2 + q_1 - q_2 - \sum_{j=1}^n k_j - \sum_{l=1}^{n'} k'_l \right) e^{Y_p(\Omega_U) + Y_q(\Omega_L)}$$

$$\times \left\{ \hat{\bar{B}}_{0}^{(r)} + \sum_{j=1}^{n} \frac{\tilde{\bar{B}}_{1U}^{(r)}(k_{j})}{\tilde{\bar{S}}_{p}(k_{j})} + \sum_{l=1}^{n'} \frac{\tilde{\bar{B}}_{1L}^{(r)}(k_{l}')}{\tilde{\bar{S}}_{q}(k_{l}')} + \sum_{h>j>k>1} \frac{\tilde{\bar{B}}_{2UU}^{(r)}(k_{j},k_{k})}{\tilde{\bar{S}}_{p}(k_{j})\tilde{\bar{S}}_{p}(k_{k})} \right.$$

$$+ \sum_{n'>l>m>1} \frac{\bar{\beta}_{2LL}^{(r)}(k_l, k_m)}{\bar{\delta}_q(k_l')\bar{\delta}_q(k_m')} + \sum_{i=1}^n \sum_{l=1}^{n'} \frac{\bar{\beta}_{2UL}^{(r)}(k_j, k_l')}{\bar{\delta}_p(k_j)\bar{\delta}_q(k_l')}$$

No semi-soft approximation

Current Situation, Higher Energies

Higher Energies and/or Different Acceptances:

Machine	$\theta_{\min} - \theta_{\max} \text{ (mrad)}$	\sqrt{s} (GeV)	\bar{t}/s	\sqrt{t} (GeV)
LEP	28-50	Mz	3.5×10^{-4}	1.70
PCCcc	64-86	M_Z	13.7×10^{-4}	3.37
FCCcc	64-86	350	13.7×10^{-4}	13.0
ILC	31-77	500	6.0×10^{-4}	12.2
ILC	31-77	1000	6.0×10^{-4}	24.4
CLIC	39-134	3000	13.0×10^{-4}	108

=> Different 🗸

Current Situation, Higher Energies

Higher Energies and/or Different Acceptances: Generalizing our FCCee analysis to higher energies, we get

-	SIN	١	tup
ш.	JUL.) SC	шр

Type of correction/error	Update 2019	Forecast
(a) Photonic $[\mathcal{O}(L_{\epsilon}\alpha^2)]\mathcal{O}(L_{\epsilon}^2\alpha^3)$	0.033%	0.13×10^{-4}
(b) Photonic $[\mathcal{O}(L_{\epsilon}^{3}\alpha^{3})]\mathcal{O}(L_{\epsilon}^{4}\alpha^{4})$	0.028%	0.27×10^{-4}
(c) Vacuum polariz.	0.022% [34]	1.1×10^{-4}
(d) Light pairs	0.010% [7]	0.4×10^{-4}
(e) Z and s-channel γ exchange	0.5% (0.06%)	1.0×10^{-4}
(f) Up-down interference	0.004% [13]	<0.1 × 10 ⁻⁴
(g) Technical Precision	(0.027%)	0.1×10^{-4}
Total	0.5% (0.078%)	1.6×10^{-4}

Current Situation, Higher Energies

and the forecasts

Forecast				
Type of correction/error	FCCcc350	ILC ₁₀₀₀	CLIC ₃₀₀₀	
(a) Photonic $O(L_{\epsilon}^2 \alpha^3)$	0.13×10^{-4}	0.15 × 10 ⁻⁴	0.20×10^{-4}	
(b) Photonic $O(L_s^4 \alpha^4)$	0.27×10^{-4}	0.37×10^{-4}	0.63×10^{-4}	
(c) Vacuum polariz.	1.1×10^{-4}	1.1×10^{-4}	1.2×10^{-4}	
(d) Light pairs	0.4×10^{-4}	0.5×10^{-4}	0.7×10^{-4}	
(e) Z and s-channel γ exchange	$1.0 \times 10^{-4(k)}$	2.4×10^{-4}	16×10^{-4}	
(f) Up-down interference	0.1×10^{-4}	$< 0.1 \times 10^{-4}$	0.1×10^{-4}	
Total	1.6×10^{-4}	2.7×10^{-4}	16×10^{-4}	

(no technical error included).

Summary: We need financial support!

