
Improving Photon Pointing with Graph Neural Networks

Shikai Qiu, Haichen Wang

University of California, Berkeley
Supported by USATLAS

April 14, 2021
USATLAS SUPER Symposium

1 / 21

Motivation

• EM showers are naturally and faithfully represented by graphs, making GNN the candidate for
a powerful performance tool in a wide range of tasks: energy calibration, photon direction
measurement, e-γ identification, etc.

• We apply GNN to photon pointing as a proof of this general concept.

2 / 21

Background

• Photon Pointing: measurement of the z-coordinate of a photon along the beamline.

• Application: measurement of photon direction, particularly important in H→ γγ studies;
Search for non-pointing photons predicted by many BSM models; etc.

• Current method: measures centroids of the EM shower in the first and second EM
calorimeter layers, and connect the dots.

3 / 21

Graph Neural Networks

• A graph G consists of nodes X = {xi} and edges E = {eij}.
• A GNN models a function from a graph G to some output y by
1. Propagate and process information locally over the graph, e.g:

xi ← NodeUpdateNN(xi, {xj, eij}j̸=i)

eij ← EdgeUpdateNN(eij, xi, xj)

2. Perform a readout operation, e.g:

y← ReadoutNN

(∑
i

xi

)

4 / 21

Graph Representation of an EM Shower

The most faithful representation of a shower is a graph whose nodes represent individual cells
in the calorimeter, with node features being the coordinate of the cell and the amount of energy
deposit.

Each cell with non-zero energy deposit is a node in the graph

5 / 21

Graph Representation of an EM Shower

As a proof-of-principle project, we use a simpler graph with only 4 nodes, each representing a
layer of the EM calorimeter including the pre-sampler. Each node is connected to each other.

• Node features: layer-index, spatial coordinates, energy deposit, and
shower shape variables(rough descriptions of shower shape, e.g: width of the shower in η.)

• Edge features: relative separation

A shower represented by a graph of 4 nodes, edges not shown.

xi = (i, ηi, ϕi, Ei, si)

eij = (ηi − ηj, ϕi − ϕj)

6 / 21

Dataset

We construct a dataset of 23.4 million electron shower events from a Monte Carlo(MC)
Simulated Z→ ee dataset. The dataset is split at random into training, validation, and testing set
with a ratio of 8:1:1. z roughly follows a Gaussian distribution with zero mean and σ ≈ 40mm.

7 / 21

Prediction and resolution

• GNN significantly improves the resolution, i.e, average prediction error.

Prediction v.s Truth, |η| ∈ [0, 0.8] Pull plot, |η| ∈ [0, 0.8]

8 / 21

|η| ∈ [0, 0.8] |η| ∈ [0.8, 1.37] |η| ∈ [1.52, 1.8] |η| ∈ [1.8, 2.37]

medGNN = −5%
medCalo = −13%

medGNN = −12%
medCalo = −11%

medGNN = −63%
medCalo = −0.08%

medGNN = −56%
medCalo = −6%

As |η| increases, resolution becomes worse for both models, and GNN develops a bias.
med = median.

9 / 21

Interpretation: resolution

Prediction in the forward region is intrinsically more difficult
as z becomes more sensitive to angular resolution.

10 / 21

Interpretation: bias

• The bias is an artifact of the chosen mean-squared-error objective function. We are working
to find a better objective function, but we can already correct for the bias.

• We fit the slope zpred ≈ slope× ztrue in different η bins.

• For each prediction zpred, we look up its η value and determine the slope s in that bin.

• Scale the prediction with the inverse slope zpred ← zpred/s.

|η| ∈ [1.8, 2.37]
medGNN = −56%

Before correction After correction

11 / 21

GNN still achieves better resolution after correction.

12 / 21

Conclusion

• Graphs are well suited to represent EM showers, making GNN a powerful performance tool in
a wide range of tasks: energy calibration, photon direction measurement, e-γ identification,
etc.

• As a proof of principle, we applied GNN to photon pointing.

• We show that GNN improves the resolution over the existing method, and its current bias can
be corrected.

• Future directions include using a higher-resolution graph representation of the shower, e.g,
where nodes are individual cells in the calorimeter.

13 / 21

Acknowledgements

• Thanks to USATLAS and the USATLAS SUPER Program for funding and supporting this
research.

• Thanks to my advisor Professor Haichen Wang for his guidance and support.

• Thanks to my collaborators, Jake Austin, Shuo Han, Xiangyang Ju, and Ryan Roberts, for their
support and insightful discussions.

14 / 21

Back up

15 / 21

Definition of resolution

We define resolution by the mean absolute error

Resolution =
1

N

N∑
i=1

|z(i)pred − z(i)true|, (1)

where the sum is over the test sample.

16 / 21

The model does work for photons

We apply the trained model on MC simulated Z→ eeγ events to predict pointing value of
photons. After similar bias correction, the model still outperforms calo pointing.

17 / 21

Why there is a bias and how we can reduce it

The bias is largely an effect of the chosen loss function. Let x denote the input to the model(the
shower graph). The model minimizes the loss function defined by the average squared error
between its prediction and truth over the training set,

L = E(x,z)∼p(x,z)[(f(x)− z)2], (2)

where f denotes the map from input x to the model’s prediction for z. The global minimum of
the loss function is obtained by setting δL/δf = 0.

δL = Ex∼p(x)

[
Ez∼p(z|x)

[
δ(f(x)− z)2

]]
(3)

= 2Ex∼p(x)

[
Ez∼p(z|x)[δf(x)(f(x)− z)]

]
(4)

= 2Ex∼p(x)

[
δf(x)(f(x)− Ez∼p(z|x)[z])

]
(5)

(6)

This shows δL/δf = 2p(x)(f(x)− Ez∼p(z|x)[z]). Therefore the optimal solution f∗ is given by
f∗(x) = Ez∼p(z|x)[z], the conditional expectation value of z given x.

18 / 21

Why there is a bias and how we can reduce it

• Since p(z|x) ∝ p(z)p(x|z), when the input information x is compatible with a large range of z,
which can happen when |η| is large, the model would predict an average value of z
determined by p(z), the prior z-distribution, and p(x|z), which captures the kinematics and
the detector effects such as noise. p(z) ∝ exp

(
−z2/2σ2

z

)
suppresses large |z| contribution

exponentially in z2/2σ2
z , which biases the model to predict low values. We alleviated this

effect by re-weighting the training examples so that z follows a uniform distribution within
±80mm.

• On the other hand, we have no control over the p(x|z) term. For example, in the very forward
region, the finite resolution of the photon/electron direction of travel translates to an
increasingly large resolution on its z-coordinate. There x will have little mutual information
with z and p(x|z) will approach a constant for all z. Then f∗(x) = 0 since p(z) is symmetric.
Clearly, if we can supply the model with input that has higher mutual information with the
true z, e.g: using calorimeter cells as nodes, the bias can be further reduced. Finally, an
alternative way to reduce the bias is to change the loss function, which is yet to be explored.

19 / 21

Model architecture

The model can be divided into an encoder and a decoder . The encoder starts with an
embedding layer which maps each node and edge raw feature vector into a latent
representation xi, eij ∈ RH, followed by multiple encoder blocks with separate learnable
parameters, where each block updates the latent representation of the nodes and edges via

x′i = FeedForward ◦ Attention(xi, {(xj, eij)}j ̸=i), (7)

e′ij = eij +MLP ◦ LayerNorm(eij, x
′
i , x

′
j), (8)

where FeedForward is a feed-forward network with a residual connection, MLP is a Multilayer
Perceptron, and Attention is the self-attention operation that routes information from the rest
of the graph to the node i. The encoder is very similar to the Transformer encoder architecture,
except that it’s extended to incorporate edge information. We found using edge features and
performing edge updates to be a crucial component of the model. Without it, the model takes
much longer to train and achieves worse performance.

20 / 21

Model architecture

Likewise, the decoder consists of several blocks. Each block performs a pooling operation over
the latent representations of the nodes and egdes produced by the encoder and updates an
output latent state h ∈ RH via

x̃ = Affine(PoolX({xi})), (9)

ẽ = Affine(PoolE({eij})), (10)

h′ = FeedForward(h+ x̃+ ẽ), (11)

where Affine represents an affine transformation, and h is initialized to the zero vector. We use
Global Attention Pooling for both PoolX and PoolE. Finally, an MLP is used to map the final
output latent state h into a pointing prediction ẑ = MLP(h).

21 / 21

