Trigger Rate Monitoring and a New Search for Dark Photons

USATLAS SUPER Symposium

Connor Menzel* Joerg Stelzer Ben Carlson Tae Min Hong

USATLAS → SUPER Symposium

August 19, 2021

https://indico.cern.ch/event/1066365/

Overview

Project has two components

- **Monitoring:** Research and development for trigger monitoring tool xMon
- **Physics:** Determining feasibility of new trigger in the search for an exotic Higgs decay involving dark photons

Project status

- Start date was delayed one month due to contract processing
- Still have month remaining

Summary of work done

- **Monitoring:** Added functionality to xMon that allows for the detection of small deviations in groups of correlated triggers
- Physics: Found best cuts that most likely provide highest sensitivity to the signal

Overview: xMon

Trigger rate prediction tool in operation at Point 1

Use prior data

- Make fits of cross section vs pileup for individual triggers
- Returns prediction parameters to be used by xMon Online

xMon at Point 1

 Uses prediction parameters and live luminosity and pileup to calculate predicted rate

History

- Andy Aukerman (2015-19) - D3PD -> xAOD, update to Run-2 TDAQ
- Nick Felice (2016-21), SUPER '20 - Add HI, update to Run-3 data format
- CHM (2020-present)

Idea: Global Offset Detection

- xMon is great at detecting large deviations from predicted rates for individual triggers
 - Shifter needs to spot discrepancies by eye
- Groups of correlated triggers might be offset by some small percentage due to a systemic problem
 - i.e. one region of muon detector not triggering, no muons in that region detected
 - Other example: wrong calibration constants in some parts of detector for reconstruction with HLT
 - xMon could not detect these systemic offsets, but now it can!

Connor Menze

Time

Prototype: Global Offset

- Prototype the algorithm in standalone python
 - Goal: Compare the distributions of the live rate around the predicted rate
 - Steps
 - 1. Make reference histogram "offline", storing the % difference between the live and predicted
 - 2. As data come in:
 - i. Calculate the % difference between live and predicted rates and fill a new histogram
 - ii. Compare these distributions with the Kolmogorov-Smirnov test to determine similarity
 - iii. KS value is then averaged over the entire trigger group to get one value per group.

Implementation, Testing & Results

Implemented Global Offset (& other features) in c++ within TRP

- Test adapter using testbed on Ixplus
 - Python playback script allows us to test locally without collecting data
 - Tested functionality in a "test partition" using the IS monitor (below) on a special testbed server
 - Changed offset of trigger rates to see how KS value would change
 - Tested with XE and MU trigger groups
 - Success! See screenshots of the IS monitor

	# I				🗱 I		
	Name		Type	Ī	Name		Type
	₽ I		PI		PI		PI
	Global_Offset_MU		Global_Offset		Global_Offset_MU		Global_Offset
	Global_Offset_XE		Global_Offset		Global_Offset_XE		Global_Offset
	L1_2EM10VH		L1_Rate		L1_2EM10VH		L1_Rate
	L1_2EM12		L1_Rate		L1_2EM12		L1_Rate
	L1_2EM12_pred		L1_Rate_Pred		L1_2EM12_pred		L1_Rate_Pred
	L1_2EM15		L1_Rate		L1_2EM15		L1_Rate
	L1_2EM15VH		L1_Rate		L1_2EM15VH		L1_Rate
	L1_2EM15VHI		L1_Rate		L1_2EM15VHI		L1_Rate
	Value	Type	Name		Value	Type	Name
KS Values (0,2893847 No offset	Float			0.9067141 5% offset	Float	
	-19.03881	Float			8.098411	Float	
	0,189897	Float			0	Float	
	L1_MU4, L1_MU6, L1_MU10, L1_MU21, L1_MU20, L1_2MU4, L1_2MU6, L1_2MU10, L1_3MU4,	String[12]			L1_MU4, L1_MU6, L1_MU10, L1_MU21, L1_MU20, L1_2MU4, L1_2MU6, L1_2MU10, L1_3MU4,	String[12]

Next steps

- KS value seems to hover around 0.3-0.4 when there is no offset
 - Further testing required to determine why this is
- Commit code in git for the next TDAQ release

Regain operational experience with xMon during data taking

- Includes producing offline fits/references to install at P1
- Learn to monitor on new Grafana display (this is the "new" TRP web interface)
- Implement automated warning system
 - i.e. if KS value is greater than 0.6, a warning is thrown

Need to figure out most efficient way to determine trigger groups

- We could manually select trigger groups for full control
- We want to group triggers that have a common source so we have sensitivity to problems

Physics Motivation

- We can use exotic Higgs decays to search for dark photons
 - Motivated partially by theory paper arXiv:2011.05259
- Previous work done by Nick Felice on vector boson fusion (VBF) production

- I am investigating gluon fusion (ggF) production
 - Signature is photon + MET
 - ggF has a much higher cross section (~10 times larger) than VBF
 - Typically a lot of background, makes it hard to find optimal cuts
 - Can ggF contribute to the VBF measurement?
- Looking into feasibility of new trigger to help search

Connor Menze

Progress

Preselection cuts

• Began by implementing simple cuts on MC ntuples to eliminate background

 $p_T^{\gamma} > 25 \text{ GeV}$ $|\eta| < 1.37 \text{ or } 1.52 < |\eta| < 2.37$ $E_T^{miss} > 100 \text{ GeV}$ $\Delta \phi(\gamma, E_T^{miss}) < 1.5$

Observations

- Most γ +jet backgrounds have large $\Delta \phi$
- These cuts are not sensitive enough
- Increase sensitivity against photon + jet by increasing MET cut and decreasing dphi cut
- Increase sensitivity against other background by decreasing MET cut and increasing dphi cut

Next steps

• Realized that we need more information in the ntuple: MET significance, Truth and primary vertex positions, Event weights, Photon pointing $|\Delta z_{\gamma}|$

Progress (cont.)

Recreated ntuples to use the new information

- 1. Changed the ntuple production code to include the new necessary algorithms
- 2. Figured out how to successfully run this code as a job on the grid
- 3. Recently finished this process only to find out that the original MC datasets moved
- 4. Now we either need to recreate these datasets or we try to run with AOD samples instead of DAOD
 - Not ideal, but the source code did not run successfully on the AOD datasets
 - Requested DAOD samples, now waiting

Event cleaning	Detector quality conditions and primary vertex									
Leading γ	$E_{\rm T}^{\gamma} > 150 \text{ GeV}, \eta < 1.37 \text{ or } 1.52 < \eta < 2.37,$ tight, isolated, $ \Delta z_{\gamma} < 250 \text{ mm},$ $\Delta \phi(\gamma, E_{\rm T}^{\rm miss}) > 0.4$									
$E_{\rm T}^{\rm miss}$ significance	> 8.5									
Jets	0 or 1 with $p_{\rm T}$ > 30 GeV, $ \eta $ < 4.5 and $\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) > 0.4									
Leptons	veto on e, μ and τ									
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	SRI1 > 200	SRI2 > 250	SRI3 > 300	SRI4 > 375	SRE1 200–250	SRE2 250–300	SRE3 300–375			

Proposed cuts for this search for dark matter, from theory paper arXiv:2011.05259

Need to implement cuts once we get new ntuples to determine sensitivity

- Right now, it seems like high MET cut with a low dphi cut is the way to go
 - i.e. events have large MET and small dphi
 - Provides sensitivity against photon + jet background
- More information will come with the new ntuples since there is more information to work with
- Work will continue into the Fall

Questions?

Backup

Kolmogorov-Smirnov Test:

Measures maximum distance between two cumulative probability distributions

$$D_{ks} = \sup_{x} \{F_1(x) - F_2(x)\}$$

xMon Fitting Example:

Filtered Trigger Cross-section vs Pileup for L1_MU4

Filtered Trigger Cross-section vs Pileup for L1_XE30

- Many photon+jet events have large dphi
- Other backgrounds have large spread

[1] The ATLAS collaboration., Aad, G., Abbott, B. *et al.* Search for dark matter in association with an energetic photon in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. *J. High Energ. Phys.* 2021, 226 (2021). https://doi.org/10.1007/JHEP02(2021)226

[2] Chakravarti, Laha, and Roy, (1967). Handbook of Methods of Applied Statistics, Volume I, John Wiley and Sons, pp. 392-394.