B-Fragmentation Analysis Study

Julian Sennette, Dev Panchal

August, 2021

University of Texas At Austin

B Quark in the LHC

- Bottom (b) Quark: Heavy Quark; 3rd Generation
- Study of the B Quark is important for search of particles beyond the standard model and QCD predictions
- LHC experimental apparatus is equipped with subdetectors for identification and reconstruction of particle and particle paths
- Hadronic Calorimeter and tracking detector provides signal for b-jet information

Hadronization of B-quark

- Top quark pairs (ttbar) are produced in abundance in LHC
- This study focuses on ttbar final decay into b-hadron and hadronization into bjets
- Hadronization: formation of hadrons from free quarks/gluons
- Fragmentation: Empirical model describing the decay of mesons to observable final state particles

3

b-fragmentation studies with B-hadron decays

- Studies of tt pairs with the final state B-hadron decaying in J/ ψ (b \rightarrow J/ $\psi \rightarrow \mu^+\mu^-$) or in (μ)D⁰ \rightarrow (μ)K π or in D*(2010)⁺ \rightarrow D⁰ ρ mesons offer alternative methods to study m(top) as well as b-fragmentation.
- Motivation:
 - Check/quantify our knowledge of hadronization of b-quarks in hadron collider:
 - Partonic shower generators tuned to LEP results.
 - Current Monte Carlo event generator models and tunes are based on b-fragmentation observables measured at LEP:
 - yields a clean, back-to-back signature of b-quarks.
 - LHC environment is busier.
 - Provide an exclusive measurement of b-fragmentation in ATLAS.

Analysis Strategy

- Obtain a clean sample of b-jets from leptonic top mass decay with bmeson hadronization to $(\mu)D^0 \rightarrow (\mu)K\pi$ or $D^*(2010)^+ \rightarrow D^0\rho$.
- Identify D⁰ or D*(2010)⁺ candidates using techniques used for top mass analysis.
- Construct moments of the D^0 or $D^*(2010)^+$ with respect to the b-jet.
 - using calorimetric information from jets:

$$z_T^{calo} = \frac{p_T(meson)}{p_T(calo jet)} \qquad z_L^{calo} = \frac{\vec{p}(meson) \cdot \vec{p}(calo jet)}{|p(calo jet)|^2} \qquad z_{rel}^{calo} = \frac{|\vec{p}(meson) \times \vec{p}(calo jet)|}{|p(calo jet)|^2}$$

– using ghost-associated charged tracks:

$$\mathbf{z}_T^{\text{ch}} = \frac{p_T(\text{meson})}{p_T(\text{ch, jet})} \qquad \mathbf{z}_L^{\text{ch}} = \frac{\vec{p}(\text{meson}) \cdot \vec{p}(\text{ch, jet})}{|p(\text{ch, jet})|^2} \qquad \mathbf{z}_{rel}^{\text{ch}} = \frac{|\vec{p}(\text{meson}) \times \vec{p}(\text{ch, jet})|}{|p(\text{ch, jet})|^2}$$

Analysis Selections

Detector-level selections: AnalysisTop 21.2.150, TOPQ1 derivation

- $D^{*}(2010)^{+} \rightarrow D^{0}\rho$:
 - Lepton Selection:

PID: LHTight for elections, Medium for Muons e-isolation: PLVTight μ -isolation: PflowTight_FixedRad exactly one lepton with $p_T > 25$ GeV for 2015 $p_T > 27$ GeV for 2016–2018

- Jet Selection:
 - \geq 4 jets with $p_{T}>$ 25 GeV and $|\eta|<$ 2.5, EMPFlow jet container
 - \geq 1 b-tagged jet with DL1r
- MET > 20 GeV and $m_T(W) > 40$ GeV

Particle-level selections:

Exactly one lepton with $|\eta| < 2.5$ and $p_T > 25$ GeV One D^{*}(2010)⁺ candidate At least four jets with $|\eta| < 2.5$ and $p_T > 25$ GeV

- D^{*}(2010)⁺ candidate:
 - p_T > 8 GeV |y(D^{*})| < 2.1 0.14 GeV < (m(D*) - m(D⁰)) < 0.15 GeV
- Kaon and pions: Three tracks with $p_T > 3$ GeV Require one track to be π^+ ΔR (track, track) < 0.4, ΔR (tracks, jet) < 0.5

Analysis Selections

Detector-level selections: AnalysisTop 21.2.150, TOPQ1 derivation

- $(\mu)D^0 \not\rightarrow (\mu)K\pi:$
 - Lepton Selection:

 PID: LHTight for elections, Medium for Muons
 e-isolation: PLVTight
 μ-isolation: PflowTight_FixedRad
 exactly one lepton with p_T > 25 GeV for 2015

p_T > 27 GeV for 2016–2018

• Jet Selection:

 \geq 4 jets with $p_{T}>$ 25 GeV and $|\eta|<$ 2.5, EMPFlow jet container \geq 1 b-tagged jet with DL1r

• MET > 20 GeV and $m_T(W) > 40$ GeV

Particle-level selections:

Exactly one lepton with $|\eta| < 2.5$ and $p_T > 25$ GeV One D⁰ candidate At least four jets with $|\eta| < 2.5$ and $p_T > 25$ GeV

- D⁰ candidate:
 - p_T > 8 GeV |y(D⁰)| < 2.1 1.74 GeV < m(D⁰) < 1.98 GeV τ(D⁰) > 0 ps
- Kaon and pion:
 Two opposite sign tracks with p_T > 3 GeV
 ΔR (track, track) < 0.4, ΔR (tracks, jet) < 0.5
- Soft-µ:

one soft- μ with LowPt PID same charge of the soft- μ and kaon ΔR (tracks, soft- μ) < 0.3

Detector-level plots

Observe bad Data/MC agreement, with ~2x more MC events than Data. Investigation of this discrepancy is on-going...

Unfolding Procedure

- Concept: Estimate the "truth-level" spectrum of an observable if measured with an ideal detector and infinite statistics
- Distribution of any observable is distorted due to experimental limitations detector resolution, efficiencies, statistics, ...
- Goal of unfolding is to un-smear the detector effects to obtain a "truth-level" spectrum.
- The detector smearing is described by a migration matrix.
- The (i,j)th element of the migration matrix corresponds to the number of events of an observable at particle level in bin i to detector level in bin j.

Closure Test

- The first step of unfolding is to perform a closure test.
- The aim of the closure test is to retrieve the distribution of observables at particle level from the ones at detector level.
- Use nominal ttbar sample Powheg+Pythia 8 as the Asimov data.
- Performed a closure test with uniform binning for zT moment

✤ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Closure Test

- The unfolded distribution does not match the particle level distribution:
 - We observe large bin by bin correlations in the unfolded distribution as evident from this correlation matrix
- Our choice of uniform binning does not give a good unfolding distribution
 - We observe migration from particle level to detector level distribution
 - This migration causes large bin by bin correlations in the unfolded distribution

Closure Test with Updated Binning

- We would like to reduce this bin migration by choosing a different set of binning
 - Our first choice of rebinning is the following
 [0, 0.35, 0.45, 0.55, 0.65, 1]
 - This choice of binning was an attempt to reduce bin migrations, however, this is not the optimal binning

Conclusions and Next Steps

- We have observed a better closure test with updated binning
- However, the first unfolded bin has large uncertainty and strong bin to bin correlations
- We are currently investigating this bin migration and will try to reduce it by choosing a different set of particle level selections
- ↔ We will also perform unfolding for the D⁰ decay channel

BACKUP

Migration Matrix with Updated Binning

