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Outline 
Lecture 1:  Introduction and basic formalism 

 Probability 
 Parameter estimation 
 Statistical tests 

Lecture 2:  Statistics for making a discovery 
 Multivariate methods 
 Discovery significance and sensitivity 
 Systematic uncertainties 
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Data analysis in particle physics  

Observe events of a certain type 

Measure characteristics of each event (particle momenta, 
number of muons, energy of jets,...) 
Theories (e.g. SM) predict distributions of these properties 
up to free parameters, e.g., α, GF, MZ, αs, mH, ... 
Some tasks of data analysis: 

 Estimate (measure) the parameters; 
 Quantify the uncertainty of the parameter estimates; 
 Test the extent to which the predictions of a theory are  
 in agreement with the data (→ presence of New Physics?) 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional probability: 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 
An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations. 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’. 
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Frequentist approach to parameter estimation 
The parameters of a probability distribution function (pdf) are  
constants that characterize its shape, e.g. 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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Example:  fitting a straight line 

Data: 

Model:  measured yi independent, Gaussian: 

assume xi and σi known. 

Goal:  estimate θ0  

(don’t care about θ1). 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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Case #1:  θ1 known a priori 

For Gaussian yi, ML same as LS 

Minimize χ2 → estimator 

Come up one unit from      

to find  



G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 1 15 

Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

Case #2:  both θ0 and θ1 unknown 
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The information on θ1 

improves accuracy of 

Case #3: we have a measurement t1 of θ1 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, interpretation of probability extended to 
degree of belief (subjective probability).  Use this for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayesian methods can provide more natural treatment of  non- 
repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 

No golden rule for priors (“if-then” character of Bayes’ thm.) 
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Case #4:  Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ×       prior 

← based on previous  
     measurement 

reflects ‘prior ignorance’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 



G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 1 20 

Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than naive √n . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than naive 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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A more general fit (symbolic) 
Given measurements:  

and (usually) covariances: 

Predicted value: 

control variable parameters bias 

Often take: 

Minimize 

Equivalent to maximizing L(θ) » e-χ2/2, i.e., least squares same  
as maximum likelihood using a Gaussian likelihood function.  

expectation value 
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Its Bayesian equivalent 

and use Bayes’ theorem: 

To get desired probability for θ, integrate (marginalize) over b: 

→ Posterior is Gaussian with mode same as least squares estimator,  
     σθ  same as from χ2 = χ2

min + 1.  (Back where we started!) 

Take 

Joint probability 
for all parameters 
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Alternative priors for systematic errors 
Gaussian prior for the bias b often not realistic, especially if one 
considers the "error on the error".  Incorporating this can give 
a prior with longer tails: 

Represents ‘error 
on the error’;  
standard deviation  
of πs(s) is σs. 
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A simple test 
Suppose fit effectively averages four measurements. 

 Take σsys = σstat = 0.1, uncorrelated. 

Case #1: data appear compatible Posterior p(µ|y): 

Usually summarize posterior p(µ|y)  
with mode and standard deviation: 

experiment 
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Simple test with inconsistent data 
Case #2: there is an outlier 

→ Bayesian fit less sensitive to outlier. 

Posterior p(µ|y): 

experiment 
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(See also D'Agostini 1999; Dose & von der Linden 1999) 
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Goodness-of-fit vs. size of error 
In LS fit, value of minimized χ2 does not affect size 
of error on fitted parameter. 

In Bayesian analysis with non-Gaussian prior for systematics, 
a high χ2 corresponds to a larger error (and vice versa). 

2000 repetitions of 
experiment, σs = 0.5, 
here no actual bias. 

po
st
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r σ
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χ2 

σµ from least squares 
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Introduction to hypothesis testing 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 

 E.g. write x ~ f (x|H). 

 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 

Simple (or “point”) hypothesis:  f (x|H) completely specified. 

Composite hypothesis:  H contains unspecified parameter(s). 

The probability for x given H is also called the likelihood of 
the hypothesis, written L(x|H). 
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Definition of a test 
Consider e.g. a simple hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region W of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ W | H0 ) ≤ α 

If x is observed in the critical region, reject H0. 

α is called the size or significance level of the test. 

Critical region also called “rejection” region; complement is 
acceptance region. 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Physics context of a statistical test 
Event Selection:  the event types in question are both known to exist. 

 Example:  separation of different particle types (electron vs muon) 
 or known event types (ttbar vs QCD multijet). 
 Use the selected sample for further study. 

Search for New Physics:  the null hypothesis H0 means Standard Model 
events, and the alternative H1 means "events of a type whose existence  
is not yet established" (to establish or exclude the signal model is the goal 
of the analysis). 

 Many subtle issues here, mainly related to the heavy burden 
 of proof required to establish presence of a new phenomenon.   

The optimal statistical test  for a search is closely related to that used for  
event selection. 
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Suppose we want to discover this… 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

SUSY event (ATLAS simulation): 
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But we know we’ll have lots of this… 

SM event also has high   
pT jets and muons, and  
missing transverse energy. 

→ can easily mimic a SUSY  
event and thus constitutes a 
background. 

ttbar event (ATLAS simulation) 
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Example of a multivariate statistical test 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pt of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
Often call H0 the background hypothesis (e.g. SM events); 
H1, H2, ... are possible signal hypotheses. 
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Defining a multivariate critical region 
Each event is a point in x-space; critical region is now defined 
by a ‘decision boundary’ in this space. 

What is best way to determine the decision boundary? 

W 
H1 

H0 

Perhaps with ‘cuts’: 
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Other multivariate decision boundaries 

Or maybe use some other sort of decision boundary: 

W 
H1 

H0 

W 
H1 

H0 

linear or nonlinear 
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Test statistics 
The decision boundary can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Significance level and power 
Probability to reject H0 if it is true  
(type-I error): 

(significance level) 

Probability to accept H0 if H1 is  
true (type-II error): 

(1 - β = power) 
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Signal/background efficiency 
Probability to reject background hypothesis for  
background event (background efficiency): 

Probability to accept a signal event 
as signal (signal efficiency): 
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Purity of event selection 
Suppose only one background type b; overall fractions of signal 
and background events are πs and πb (prior probabilities). 

Suppose we select signal events with t > tcut.  What is the 
‘purity’ of our selected sample? 

Here purity means the probability to be signal given that 
the event was accepted.  Using Bayes’ theorem we find: 

So the purity depends on the prior probabilities as well as on the 
signal and background efficiencies. 
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Summary of lecture 1 
Theoretical predictions contain in general adjustable parameters; 
estimating them from the data is a central task of statistics. 

Frequentist approach: 
 Probability only assigned to data 
 Construct functions of data (estimators):  ML, LS 

Bayesian approach: 
 Probability assigned also to parameters (“degree of belief”) 
 Marginalize over nuisance parameters (MCMC)   

Hypothesis tests 
 Identify subset of data space (critical region, W) disfavoured 
 by hypothesis H0, but favoured by alternative(s). 
 If data are observed in W, reject H0 

Next lecture:  how to set critical region in a multivariate space. 
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Extra slides  
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 

 see also www.pp.rhul.ac.uk/~cowan/sda 

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods 
in the Physical Sciences, Wiley, 1989 

 see also hepwww.ph.man.ac.uk/~roger/book.html 

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 

F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 

S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 

C. Amsler et al. (Particle Data Group), Review of Particle Physics, 
Physics Letters B667 (2008) 1; see also pdg.lbl.gov sections on 
probability statistics, Monte Carlo 
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Some Bayesian references  
P. Gregory, Bayesian Logical Data Analysis for the Physical 
Sciences, CUP, 2005 

D. Sivia, Data Analysis: a Bayesian Tutorial, OUP, 2006 

S. Press, Subjective and Objective Bayesian Statistics:  Principles, 
Models and Applications, 2nd ed., Wiley, 2003 

A. O’Hagan, Kendall’s, Advanced Theory of Statistics, Vol. 2B, 
Bayesian Inference, Arnold Publishers, 1994 

A. Gelman et al., Bayesian Data Analysis, 2nd ed., CRC, 2004 

W. Bolstad, Introduction to Bayesian Statistics, Wiley, 2004 

E.T. Jaynes, Probability Theory:  the Logic of Science,  CUP, 2003 


