First observation of $B^0_{s} \rightarrow J/\psi f_0(980)$ decays

Michael Cutajar on behalf of group B Collaboration (CLASHEP April 2011)

Phys. Lett. B698, 2011

ArXiv: 1102.0206v2

CP violation on B⁰_s **decay**

$$\beta_s = a r g - V_{ts} V_{tb} / V_{cs} V_{cb}$$

 β_s

$$B_s^0 \to J/\psi f_0$$

$$D_s^+ \to f_{\not s} \pi^+$$

$$\boxed{R_{f_0/\phi} = \frac{\Gamma(B_S^0 \to J/\Psi f_0, \ f_0 \to \pi^+ \pi^-)}{\Gamma(B_S^0 \to J/\Psi \phi, \ \phi \to K^+ K^-)} \approx 20\%}$$

CP violation on B⁰_s decay

SM: *P* in the interference between the mixing and the direct decay.

One can be sensitive to ΩP in respect to β_s , by the interference of: $\delta_s = \delta_{mixing} - \delta_{direct} \sim \beta_s$ Measuring the ΩP :

$$A_{CP} = \frac{-\sin(\phi_S)\sin(\Delta m_S t)}{\cosh(\frac{\Delta\Gamma_S t}{2}) - \cos(\phi_S)\sinh(\frac{\Delta\Gamma_S t}{2})}$$

LHCb Detector Overview

- Ring Imaging Cherenkov
- Pion/Kaon separation

The **forward coverage** of the LHCb detector and its **high resolution on the primary vertex** determination is essential for the study of **b-hadrons production**.

$B^0_{s} \rightarrow J/\psi(\mu^+\mu^-) \phi$ event

$B^0_{s} \rightarrow J/\psi f_{0}(980) \rightarrow \mu^+\mu^-\pi^+\pi^-$

 $B^0_{\ s} \rightarrow J/\psi f(980) \rightarrow \mu^+\mu^-\pi^+\pi^-$

$\pi^+\pi^-$ spectrum

 $|A(m)|^{2} = N_{0} mp(m) q(m) [Flatt\acute{e}[f_{0}(980)] + A_{1} \exp^{(i\delta)} BW[f_{0}(1370)]]^{2}$

Ratio Measurement

169 f₀(980) events and 635 Φ events:

$$R_{f_0/\phi} \equiv \frac{\Gamma(B_s^0 \to J/\psi f_{0,f_0} \to \pi \pi)}{\Gamma(B_s^0 \to J/\psi \phi, \phi \to K K)} = 0.252^{+0.252+0.027}_{-0.032-0.033}$$

- Cross-check with fit to $B^{0}_{\ _{s}}$ mass distribution (no uncertainties related to $\pi^{*}\pi^{*}$ fit)
- Within mass window of $f_0(980)$.
- Ratios are compatible within errors $R' \equiv \frac{\Gamma(B_s^0 \to J/\psi \pi + \pi, |m(\pi \pi) - 980 \ MeV| < 90 \ MeV)}{\Gamma(B_s^0 \to J/\psi \phi, \phi \to KK)}$

 $R' = 0.162 \pm 0.022 \pm 0.016$ Theory: R' = 0.20 (S. Stone and L. Zhang, PRD**79**,2009)

Systematics uncertainties

Parameter	Negative change	Positive change
$f_0(1370)$ mass	0.3	1.9
$f_0(1370)$ width	2.3	2.6
$\pi^+\pi^-$ mass dependent efficiency	2.3	2.3
m_0g_1	4.2	3.6
g_2/g_1	0.7	0.7
Addition of non-resonant $\pi^+\pi^-$	7.3	0
MC statistics (efficiency ratio)	2.3	2.3
$B_s^0 p_T$ distribution	0.5	0.5
B_s^0 mass resolution	0.5	0.5
PID efficiency	1.0	1.0
ϕ detection	9.0	9.0
Total	13.1	10.8

Main uncertainties due to:

- Efficiency of detecting $\Phi \rightarrow K^+K^-$ versus $\Phi \rightarrow \pi^+\pi^-$
- Assumptions made in choice of decay amplitudes used in the fit to $m(\pi^+\pi^-)$.
- Fit parameters.

Conclusions

- LHCb has observed for the <u>first time</u> the f_0 (980) resonance in the $B^0_{\ s} \rightarrow J/\psi f_0 \rightarrow \mu^+\mu^- \pi^+\pi^-$ decay.
- Data has been successfully fitted, so far the background is under control.
- $R_{tol \phi} = 0.252$ is an observable independent of the efficency of the detection of the B^0_{s} .
- More statistics will allow to distinguish $B^0_{\ s}$ and $\overline{B}^0_{\ s}$ in order to measure the β_s angle.

Group B Collaboration

aniel Geraldo Patricia Michael Kenyi Bruno Xitzel Sarah Alberto Gago

Rafael Thiago Alvaro Rafael Edson Hernán Flavia

Carlos

Photography by Lucia Duarte

BACK UP

CP violation on B^o_s decay

CKM matrix

CKM unitarity triangle

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} V_{ui} V_{uj}^* + V_{ci} V_{cj}^* + V_{ti} V_{tj}^* = 0 \quad (i \neq j)$$

Back up slides

•
Flatté
$$(m) = \frac{1}{m_0^2 - m^2 - im_0(g_1\rho_{\pi\pi} + g_2\rho_{KK})}$$