
IRIS-HEP
Developing C++ modules support in CMSSW and Boost

Mentors: Dr David Lange, Dr Vassil Vassilev
Student: Purva Chaudhari



What is CMSSW?
➢ CMS is a particle detector that 

is designed to see a wide range 
of particles and phenomena 
produced in high-energy 
collisions in the LHC. 

➢ Many of CMS Software 
components (CMSSW) are 
hosted on Github.



About Project
Reduce Boost dependencies in 

CMSSW

● Reducing boost dependencies 
helps us create more lightweight 
boost clang modules for 
upcoming c++20.

● This also reduces the amount of 
headers that we need to work on 
to be able to use c++20 clang 
modules.



Previous work done
● boost::array → std::array 
● boost::unordered_map → std::unordered_map 
● boost::unordered_set → std::unordered_set 
● boost::function → std::function 
● boost::random → stl 
● boost::hash → std::hash 
● boost::filesystem → std::filesystem 
● boost::mutex → std::mutex 
● boost::variant →std::variant



My current contributions 
❏ boost::bind →std::bind 

❏ boost::python → pybind11

❏ boost::lexical_cast → corresponding stl 
casting methods

❏ Tried boost::regex → std::regex (could not 
due to lower performance of std::regex)

❏ Checked out probable replacements methods 
for boost/string/algorithms



boost::bind → std::bind



Boost::python → pybind11
1. Boost::python::list/dict → pybind11::list/dict 

2. Boost::python::list/dict → object.cast



Boost::python → pybind11
3. Boost python module → pybind11 module



Boost::lexical_cast → stl casting
1. Upcasting/downcasting → static_cast 

2. From string to int/double/unsigned long long → std::stoi/ std::stod/ std::stoull 



Boost::lexical_cast → stl casting
3. From int/ unsigned/ template to string → std::to_string 



Probable approach to eliminate boost algorithms
1. boost::algorithm::split



Existing boost dependencies
● boost::regex →  std::regex has low performance 
● boost::format →std::format c++20. 
● boost::posix → std::chrono can be a probable approach
● boost::serialization 
● boost::iterator  
● boost::spirit
● boost::algorithm



Thank You


