
Utilize second order
derivatives from
Clad in ROOT

Student: Baidyanath Kundu
Mentors: Vassil Vassilev, Ioana Ifrim

Overview

What is ROOT and why are second order derivatives required in it?

- ROOT is a data processing framework created and used in CERN

- Physicists need to calculate the hessian matrix (second order derivative) for various

calculations

- More importantly it is used in the ROOT optimiser (currently through Numerical

Differentiation)

What is Clad and why should we use it to calculate derivatives?

- Clad is an Automatic Differentiation library built as a Clang Plugin

- Automatic Differentiation is faster and more accurate than Numerical Differentiation

- Thus using the hessian from Clad in the ROOT optimizer will improve its performance

What was required for this project?

Main Aim: Add hessian mode support to TFormula class in ROOT

- TFormula class acts as a bridge between compiled and interpreted code

- TFormula operates on arrays and generally speaking arrays are an important part

of programming but Clad’s hessian mode did not have array support.

- Clad’s hessian mode depends on forward mode and reverse mode

- Reverse mode had support for arrays named “p” but forward mode didn’t have any

support for arrays

- So the sub-objective was to add array differentiation support in forward, reverse

and hessian mode

Add array diff support in forward mode

Basic idea:

Arrays are groups of single
variables BUT

Allocating more memory = slower calculation

double f(double* x) {
 return x[0] * x[1] * x[2];
}

clad::differentiate(f,
"x[2]");

double f(double x, double y, double z) {
 return 1;
}

clad::differentiate(f, "y");

double f_darg1(double x, double y, double z) {
 double _d_x = 0;
 double _d_y = 1;
 double _d_z = 0;
 return 0;
}

Clad creates diff variables,
for each input variable in
forward mode

Instead we enable or disable
the derivative depending on

the requested index

double f_darg0_2(double *x) {
 double _t0 = x[0] * x[1];
 return (0 * x[1] + x[0] * 0) * x[2] + _t0 *
1;
}

Add array diff support in forward mode

Challenge:

Enable the diff by checking
against the requested index

Solution:

What to do when array subscript uses an expression
to access the index?

double sum_arr_darg0_3(double *arr, unsigned int n) {
 unsigned int _d_n = 0;
 double _d_sum = 0;
 double sum = 0;
 {
 unsigned int _d_i = 0;
 for (unsigned int i = 0; i < n; i++) {
 _d_sum += (i == 3);
 sum += arr[i];
 }
 }
 return _d_sum;
}

double sum_arr(double* arr, unsigned n) {
 double sum = 0;
 for(unsigned i = 0; i<n; i++) {
 sum += arr[i];
 }
 return sum;
}

clad::differentiate(sum_arr, "arr[3]");

Add array differentiation in reverse mode

Reverse mode already had support for arrays named
“p”. (For ROOT)

Basic idea:

Extend it to add support for all arrays

Mirror all input variables in the generated gradient to store the diff instead of
having one variable(_result) contain all the derivatives

double TFormula_id(double *x, double* p) {
 return x[0] * p[0];
}

clad::gradient(TFormula_id, "p");

double f(double* x, double* y) {
 return x[0] * y[0];
}

clad::gradient(f);

void f_grad(double *x, double *_d_x, double *y, double *_d_y)

void f_grad(double *x, double *y, double
*_result)

Add array differentiation in reverse mode

Challenge:

Clad needs to know the signature of the
generated gradient before it derives the

function for the execute function to work

But if only partial arguments are requested
clad no longer has that information in the

planned signature

Solution:

Push all the derived variables to the end, create an overload with all
input variables mirrored and use template meta-programming to fill
the extra arguments with nullptrs to emulate default argument like

functionality.

void f_grad(double *x, double *y, double *_d_x, double *_d_y)

double f(double* x, double* y) {...}

auto f_gd = clad::gradient(f);
f_gd.execute(x, d_x, y, d_y);

double f(double* x, double* y) {...}

auto f_gd = clad::gradient(f, "x");
f_gd.execute(x, d_x, y);

Add array differentiation in reverse mode

Clad needs to create a temporary variable when

deriving CallExprs so it requires the size of the input

array

Challenge:

Solution:

clad::array_ref

Takes in a pointer to an
array and the size of the
array and it used by clad
to create temporaries

double g(double *y) {
 return y[0] + y[1];
}

double f(double *x) {
 return g(x);
}

clad::gradient(f);

// Generated gradient signature:
// void f_grad(double *x, clad::array_ref<double> *_d_x)
auto f_gd = clad::gradient(f);
double dx[2];
clad::array_ref<double> dx_ref(dx, 2);
f_gd.execute(x, dx_ref);

Call forward mode and then reverse mode on the function for each element in the array.

Add array differentiation in hessian mode

Basic idea:

For this we need to know the size of the array. So hessian mode takes it using it’s arg

parameter.

The size is specified using the minimum and maximum index that the array takes

double f(double *x) {
 return x[0] * x[1] * x[2] *
x[3];
}

clad::hessian(f, "x[0:3]");

Add support for the new signature of
clad::gradient and clad::hessian in ROOT

ROOT had support for clad::gradient so the goal was to just add
clad::array_ref support.

The plan was to use the ROOT interpreter to create the clad::array_ref.

Adding hessian mode support to ROOT was similar to adding gradient support.

Basic idea:

Add support for the new signature of
clad::gradient and clad::hessian in ROOT

Using the interpreter turned out to have a lot of overhead.

Challenge:

Solution:

A struct containing the data members of
clad::array_ref was used. The trampoline
function essentially reinterpret_casts it to
clad::array_ref and we save ourselves the
overhead of including the array_ref header in the
TFormula class definition

struct array_ref_interface {
 Double_t *arr;
 std::size_t size;
};

Demo

Hessian mode in ROOT

Acknowledgements

- Mentors: Vassil Vassilev, Ioana Ifrim

- Colleagues: Garima Singh, Parth Arora

- Special Thanks: Lénárd Szolnoki

Thankyou
You can access the full report of my GSoC work here.

For a demo of array differentiation check out this link.

https://gist.github.com/sudo-panda/5d5416c05821d1d47b85e4c3c6f5ca46
https://github.com/vgvassilev/clad/blob/master/demos/Arrays.cpp

