
Towards a Muon Collider

E. Métral (many thanks to Daniel Schulte and all IMCC colleagues)

MInternational UON Collider Collaboration

$m_{\mu} = 105.7 \ MeV/c^2$ $\tau_{\mu} = 2.2 \ \mu s$

Towards a Muon Collider

E. Métral (many thanks to Daniel Schulte and all IMCC colleagues)

MInternational UON Collider Collaboration

Executive summaryIntroduction

• Overview: Novelties, challenges, etc.

Timelines and milestones

Conclusion and next steps

1) Most promising option for lepton colliders especially at the high-energy frontier

- - - -

1) Most promising option for lepton colliders especially at the high-energy frontier => Unique opportunity to reach the highest energy

-1-1

- 1) Most promising option for lepton colliders especially at the high-energy frontier => Unique opportunity to reach the highest energy
- 2) Challenging but no showstopper identified so far

- ME

- 1) Most promising option for lepton colliders especially at the high-energy frontier => Unique opportunity to reach the highest energy
- 2) Challenging but no showstopper identified so far
- 3) A 3 TeV MC, as a first stage (offering already very good physics possibilities), could be operational by 2045

- 1) Most promising option for lepton colliders especially at the high-energy frontier => Unique opportunity to reach the highest energy
- 2) Challenging but no showstopper identified so far
- A 3 TeV MC, as a first stage (offering already very good physics possibilities), could be operational by 2045 => 10+ TeV (reason to do muon collider) afterwards with more advanced technology

- ME

- 1) Most promising option for lepton colliders especially at the high-energy frontier => Unique opportunity to reach the highest energy
- 2) Challenging but no showstopper identified so far
- 3) A 3 TeV MC, as a first stage (offering already very good physics possibilities), could be operational by 2045 => 10+ TeV (reason to do muon collider) afterwards with more advanced technology
- 4) You are all welcome to participate to the promising and challenging R&D about muon colliders within the frame of the new forming International Muon Collider Collaboration (IMCC)!

=> Go to <u>https://e-groups.cern.ch/e-groups/</u> and search for groups with "muoncollider" to subscribe to the mailing lists!

- 1) Most promising option for lepton colliders especially at the high-energy frontier => Unique opportunity to reach the highest energy
- 2) Challenging but no showstopper identified so far
- A 3 TeV MC, as a first stage (offering already very good physics possibilities), could be operational by 2045 => 10+ TeV (reason to do muon collider) afterwards with more advanced technology
- 4) You are all welcome to participate to the promising and challenging R&D about muon colliders within the frame of the new forming International Muon Collider Collaboration (IMCC)!

 Muon colliders have a great potential for high-energy physics. They can offer collisions of point-like particles at very high energies, since muons can be accelerated in a ring without limitation from synchrotron radiation

- ~ :

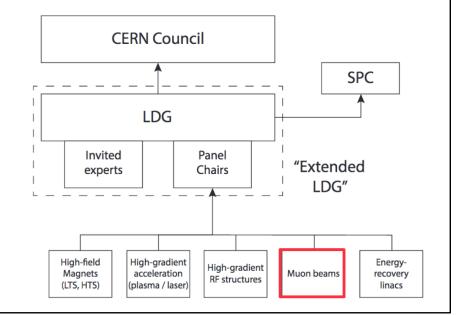
- Muon colliders have a great potential for high-energy physics. They can offer collisions of point-like particles at very high energies, since muons can be accelerated in a ring without limitation from synchrotron radiation
- However, the need for high luminosity faces technical challenges which arise from the short muon lifetime at rest and the difficulty of producing large numbers of muons in bunches with small emittance

- Muon colliders have a great potential for high-energy physics. They can offer collisions of point-like particles at very high energies, since muons can be accelerated in a ring without limitation from synchrotron radiation
- However, the need for high luminosity faces technical challenges which arise from the short muon lifetime at rest and the difficulty of producing large numbers of muons in bunches with small emittance
- Addressing these challenges requires the development of innovative concepts and demanding technologies

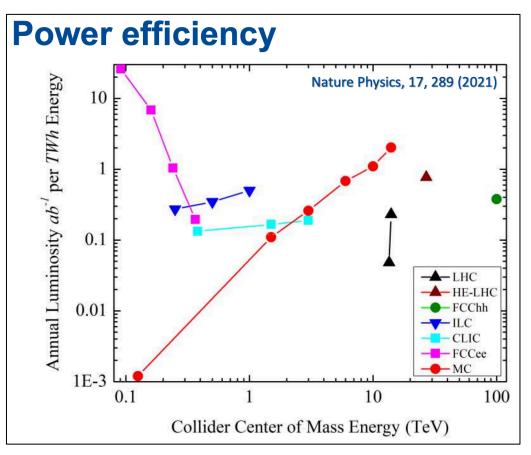
 The Update of the European Strategy for Particle Physics (ESPPU) recommended to integrate an international design study for a muon collider in the European Roadmap for accelerator R&D

-1- :

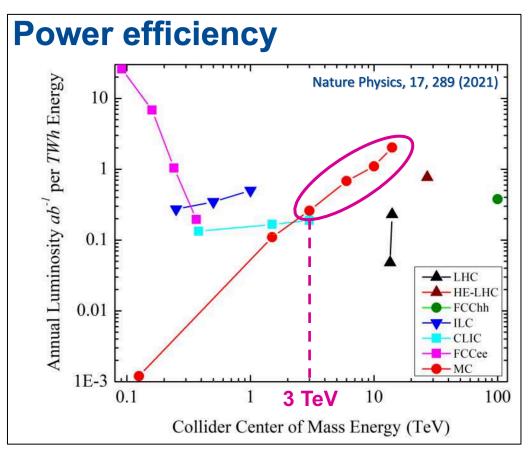
- The Update of the European Strategy for Particle Physics (ESPPU) recommended to integrate an international design study for a muon collider in the European Roadmap for accelerator R&D
- In response to this, the Laboratory Directors Group (LDG), which represents the large European Particle Physics Laboratories, has initiated an IMCC to study the concept

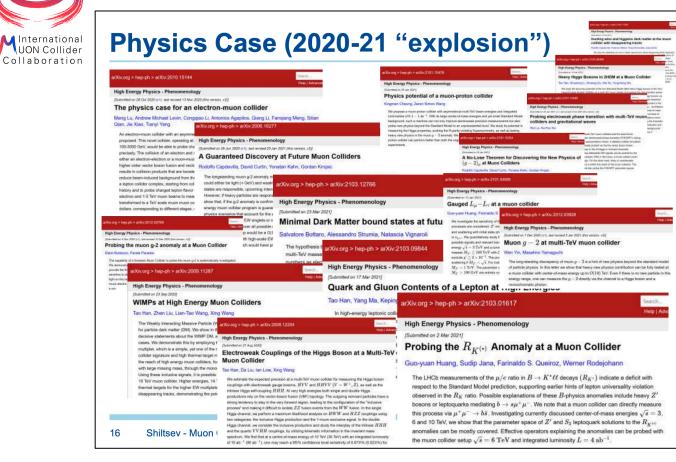


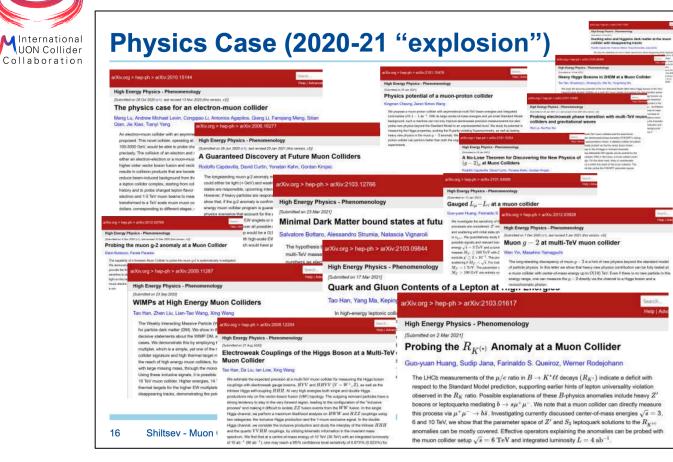
European Accelerator R&D Roadmap


LDG: directors of the largest European Laboratories

Panels


- Magnets: P. Vedrine
- Plasma: R. Assmann
- RF: S. Bousson
- Muons: D. Schulte
- ERL: M. Klein





E. Métral, SUSY 2021 conference, online, 23/08/2021

- min

Many physics studies

A MC at 3 TeV offers already very good physics possibilities (compared to CLIC)!

- A is

 In time for the next ESPPU update, the study aims to establish whether the investment into a full CDR and a demonstrator is scientifically justified

- - :

- In time for the next ESPPU update, the study aims to establish whether the investment into a full CDR and a demonstrator is scientifically justified
- It will provide a baseline concept, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers

- In time for the next ESPPU update, the study aims to establish whether the investment into a full CDR and a demonstrator is scientifically justified
- It will provide a baseline concept, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers

It will also identify an R&D path to demonstrate the feasibility of the collider

https://muoncollider.web.cern.ch/welcome-page-muon-collider-website

- - -

USEFUL LINKS

MAP^d MICE^d LEMMA

- at in a

MAP = Muon Accelerator Program (US)

USEFUL LINKS MAP MICE LEMMA

- MAP = Muon Accelerator Program (US)
- Led by Mark Palmer between 2010 and 2017

the last

- A in the

- MAP = Muon Accelerator Program (US)
- Led by Mark Palmer between 2010 and 2017
- MAP webpage: <u>https://map.fnal.gov/</u> (not accessible anymore since few months).

- MAP = Muon Accelerator Program (US)
- Led by Mark Palmer between 2010 and 2017
- MAP webpage: <u>https://map.fnal.gov/</u> (not accessible anymore since few months). See also JINST Special Issue on Muon Colliders in 2020 (<u>https://iopscience.iop.org/journal/1748-0221/page/extraproc46</u>)

-1- 1-

- MAP = Muon Accelerator Program (US)
- Led by Mark Palmer between 2010 and 2017
- MAP webpage: <u>https://map.fnal.gov/</u> (not accessible anymore since few months). See also JINST Special Issue on Muon Colliders in 2020 (<u>https://iopscience.iop.org/journal/1748-0221/page/extraproc46</u>)

=> The current muon collider baseline concept was developed by the MAP collaboration, which conducted a focused program of technology R&D to evaluate its feasibility

MICE = Muon Ionization Cooling Experiment collaboration (UK)



MICE = Muon Ionization Cooling Experiment collaboration (UK)

MICE webpage: <u>http://mice.iit.edu/</u>

- MICE = Muon Ionization Cooling Experiment collaboration (UK)
- MICE webpage: <u>http://mice.iit.edu/</u>
- MICE demonstrated the principle of ionization cooling that is required to reach sufficient luminosity for a muon collider

- ME

Introduction: MICE

- A in a

MICE = Muon Ionization Cooling Experiment collaboration (UK)

MICE webpage: <u>http://mice.iit.edu/</u>

 MICE demonstrated the principle of ionization cooling that is required to reach sufficient luminosity for a muon collider

=> *M.* Bogomilov et al. Demonstration of cooling by the muon ionization cooling experiment. Nature, 578, 2020

USEFUL LINKS MAP MICE LEMMA

- the cargo

LEMMA = Low EMittance Muon Accelerator (INFN)

- LEMMA = Low EMittance Muon Accelerator (INFN)
- The MAP scheme is based on the use of a proton beam and it is the baseline for the collider concept being developed by the IMCC

E. Métral, SUSY 2021 conference, online, 23/08/2021

-1- :-

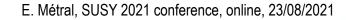
- LEMMA = Low EMittance Muon Accelerator (INFN)
- The MAP scheme is based on the use of a proton beam and it is the baseline for the collider concept being developed by the IMCC
- The LEMMA alternative approach uses positrons to produce muon pairs at threshold => D. Alesini et al., Positron driven muon source for a muon collider, 2019

- LEMMA = Low EMittance Muon Accelerator (INFN)
- The MAP scheme is based on the use of a proton beam and it is the baseline for the collider concept being developed by the IMCC
- The LEMMA alternative approach uses positrons to produce muon pairs at threshold => D. Alesini et al., Positron driven muon source for a muon collider, 2019
- Difficulty to achieve high muon beam current and hence competitive luminosity => Novel ideas are required to overcome this limitation

Muon Beam Panel

Muon Beam Panel

- Chair: Daniel Schulte (CERN)
- **Co-Chair:** Mark Palmer (BNL)

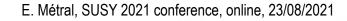

- - :

Muon Beam Panel

- Chair: Daniel Schulte (CERN)
- **Co-Chair:** Mark Palmer (BNL)

=> See more info at https://muoncollider.web.cern.ch/organisation

- - -



Muon Beam Panel

- Chair: Daniel Schulte (CERN)
- **Co-Chair:** Mark Palmer (BNL)

=> See more info at https://muoncollider.web.cern.ch/organisation

MBP works with collaboration and community meetings

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone

https://indico.cern.ch/event/1030726/

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone 1st Muon Community Meeting 20-21 May 2021

The in the

Zoom

Europe/Zurich timezone

https://indico.cern.ch/event/1030726/

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone

- A la car

https://indico.cern.ch/event/1030726/

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone

https://indico.cern.ch/event/1043242/

2nd Muon Community Meeting

12-14 July 2021 Zoom Europe/Zurich timezone

-1- 1-

https://indico.cern.ch/event/1030726/

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone

https://indico.cern.ch/event/1043242/

2nd Muon Community Mosting
12-14 12-14

- A in the

https://indico.cern.ch/event/1030726/

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone

https://indico.cern.ch/event/1043242/

2nd Muon Community Mosting
12-14 12-14

https://indico.cern.ch/event/1062146/

3rd Muon Community Meeting

Should be 06-08/10/2021

https://indico.cern.ch/event/1030726/

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone

https://indico.cern.ch/event/1043242/

2nd Muon Community Mosting
12-14 12-14

https://indico.cern.ch/event/1062146/

https://indico.cern.ch/event/1030726/

https://indico.cern.ch/event/1016248/

Workshop on Muon Collider Testing Opportunities

24-25 March 2021 Europe/Zurich timezone

https://indico.cern.ch/event/1043242/

2nd Muon Community Mosting
12-14 12-14

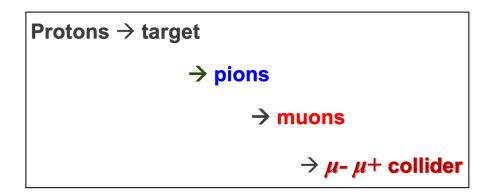
https://indico.cern.ch/event/1062146/

=> See more info at https://muoncollider.web.cern.ch/events-calendar

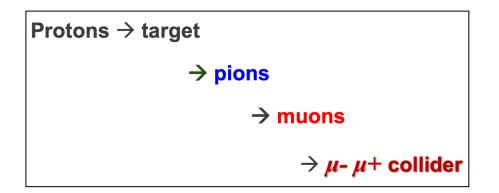
Overview: Novelties, challenges, etc.

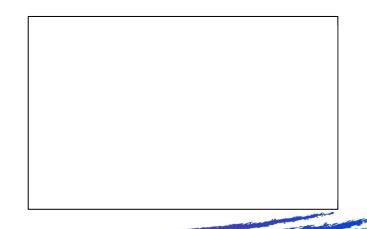
 $m_{\mu} = 105.7 \ MeV/c^2$ $\tau_{\mu} = 2.2 \ \mu s$

E. Métral, SUSY 2021 conference, online, 23/08/2021



Idea





ldea

4 main challenges (of decaying particles)

 $m_{\mu} = 105.7 \ MeV/c^2$ $\tau_{\mu} = 2.2 \ \mu s$

Idea

4 main challenges (of decaying particles)

Protons \rightarrow target \rightarrow pions \rightarrow muons $\rightarrow \mu - \mu +$ collider

E. Métral, SUSY 2021 conference, online, 23/08/2021

Muon production

 $m_{\mu} = 105.7 \ MeV/c^2$ $z_{\mu} = 2.2 \ \mu s$

Idea

4 main challenges (of decaying particles)

Protons \rightarrow target

 \rightarrow pions

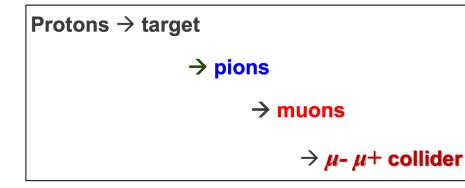
 \rightarrow muons

 $\rightarrow \mu$ - μ + collider

Muon production

Fast muon cooling

 $m_{\mu} = 105.7 \ MeV/c^2$ $= 2.2 \ \mu s$

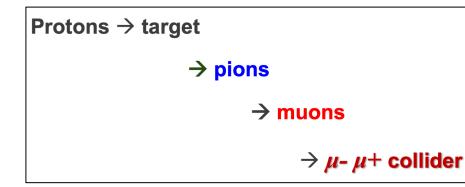

ldea

4 main challenges (of decaying particles)

Muon production

Fast muon cooling

Fast acceleration



 $m_{\mu} = 105.7 \ MeV/c^2$ $= 2.2 \ \mu s$

Idea

4 main challenges (of decaying particles)

E. Métral, SUSY 2021 conference, online, 23/08/2021

Muon production

- Fast muon cooling
- Fast acceleration
- Neutrino radiation

 $m_{\mu} = 105.7 \ MeV/c^2$ $= 2.2 \ \mu s$

Idea

4 main challenges (of decaying particles)

E. Métral, SUSY 2021 conference, online, 23/08/2021

Muon production

- Fast muon cooling
- Fast acceleration
- Neutrino radiation

Published: 28 July 1977

Measurements of relativistic time dilatation for positive and negative muons in a circular orbit

J. Bailey, K. Borer, F. Combley, H. Drumm, F. Krienen, F. Lange, E. Picasso, W. von Ruden, F. J. M. Farley, J. H. Field, W. Flegel & P. M. Hattersley

Nature **268**, 301–305 (1977) | Cite this article

596 Accesses | 153 Citations | 19 Altmetric | Metrics

Abstract

The lifetimes of both positive and negative relativistic ($\gamma = 29.33$) muons have been measured in the CERN Muon Storage Ring with the results $\tau^+ = 64.419$ (58) μs , $\tau^- = 64.368$ (29) μs The value for positive muons is in accordance with special relativity and the measured lifetime at rest: the Einstein time dilation factor agrees with experiment with a fractional error of 2×10^{-3} at 95% confidence. Assuming special relativity, the mean proper lifetime for μ^- is found to be $\tau_0^- = 2.1948(10) \,\mu s$ the most accurate value reported to date. The agreement of this value with previously measured values of τ_0^+ confirms CPT invariance for the weak interaction in muon decay.

Published: 28 July 1977

Measurements of relativistic time dilatation for positive and negative muons in a circular orbit

J. Bailey, K. Borer, F. Combley, H. Drumm, F. Krienen, F. Lange, E. Picasso, W. von Ruden, F. J. M. Farley, J. H. Field, W. Flegel & P. M. Hattersley

Nature **268**, 301–305 (1977) Cite this article

596 Accesses | 153 Citations | 19 Altmetric | Metrics

Abstract

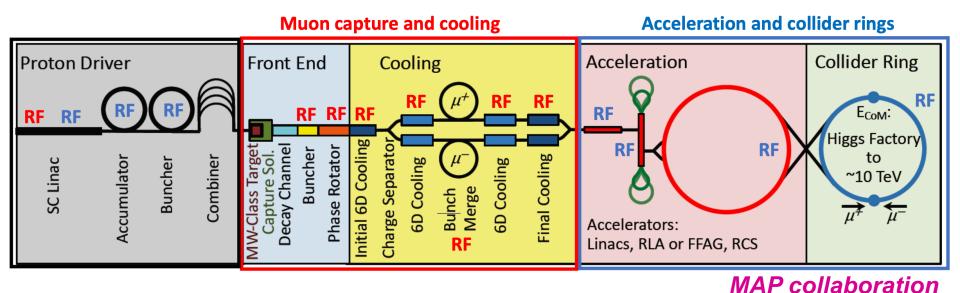
The lifetimes of both positive and negative relativistic ($\gamma = 29.33$) muons have been measured in the CERN Muon Storage Ring with the results $\tau^+ = 64.419$ (58) μs , $\tau^- = 64.368$ (29) μs The value for positive muons is in accordance with special relativity and the measured lifetime at rest: the Einstein time dilation factor agrees with experiment with a fractional error of 2×10^{-3} at 95% confidence. Assuming special relativity, the mean proper lifetime for μ^- is found to be $\tau_0^- = 2.1948(10) \,\mu s$ the most accurate value reported to date. The agreement of this value with previously measured values of τ_0^+ confirms CPT invariance for the weak interaction in muon decay. $\tau = \gamma \tau_0$

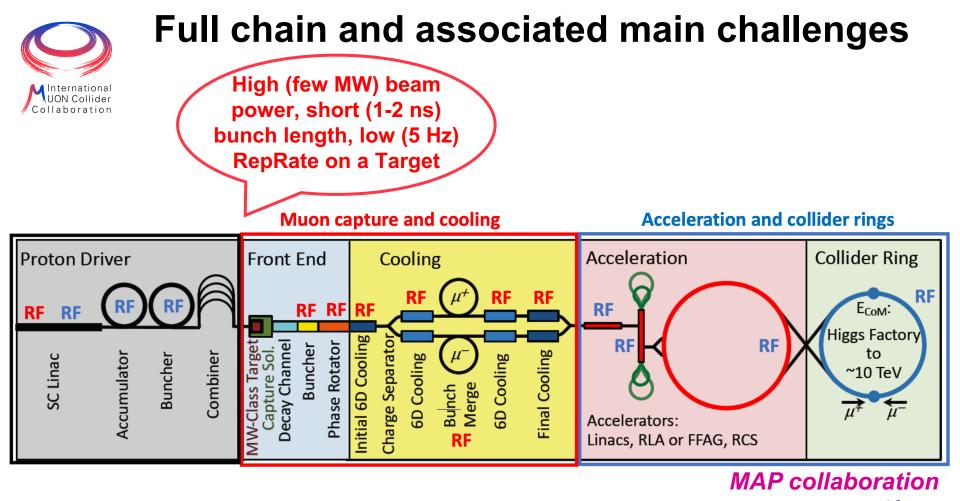
Published: 28 July 1977

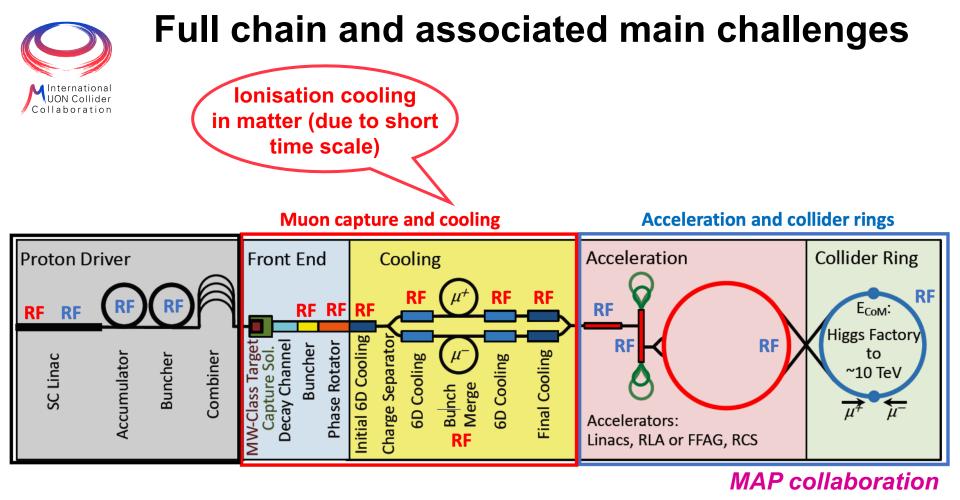
Measurements of relativistic time dilatation for positive and negative muons in a circular orbit

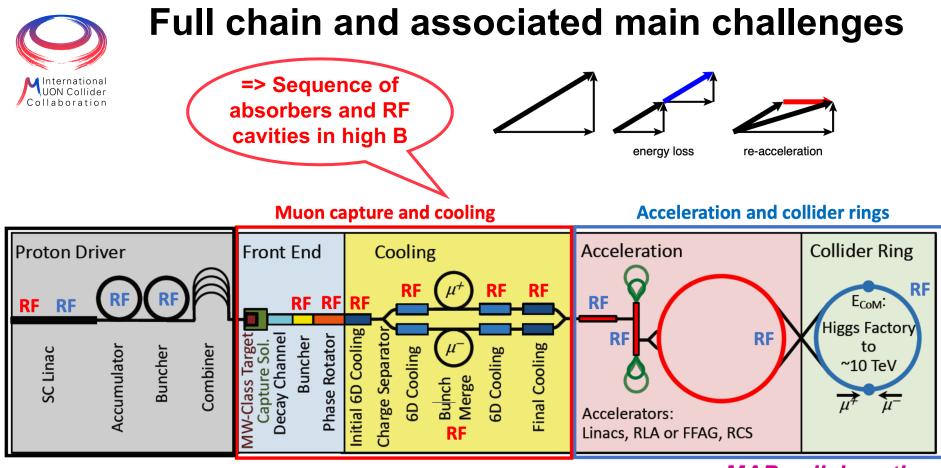
J. Bailey, K. Borer, F. Combley, H. Drumm, F. Krienen, F. Lange, E. Picasso, W. von Ruden, F. J. M. Farley, J. H. Field, W. Flegel & P. M. Hattersley

Nature **268**, 301–305 (1977) Cite this article

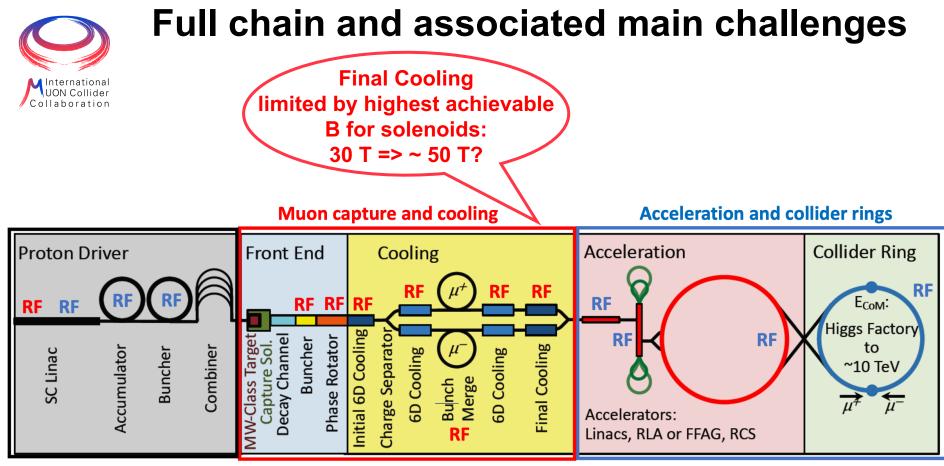

596 Accesses | 153 Citations | 19 Altmetric | Metrics

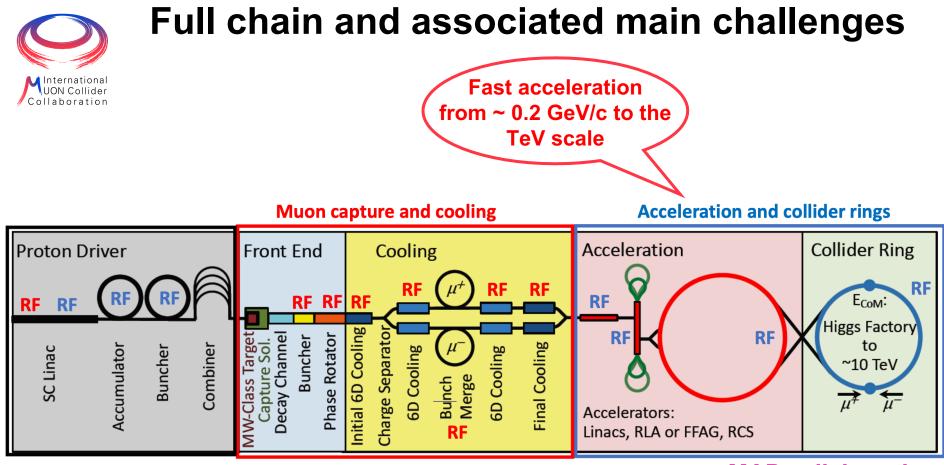

Abstract

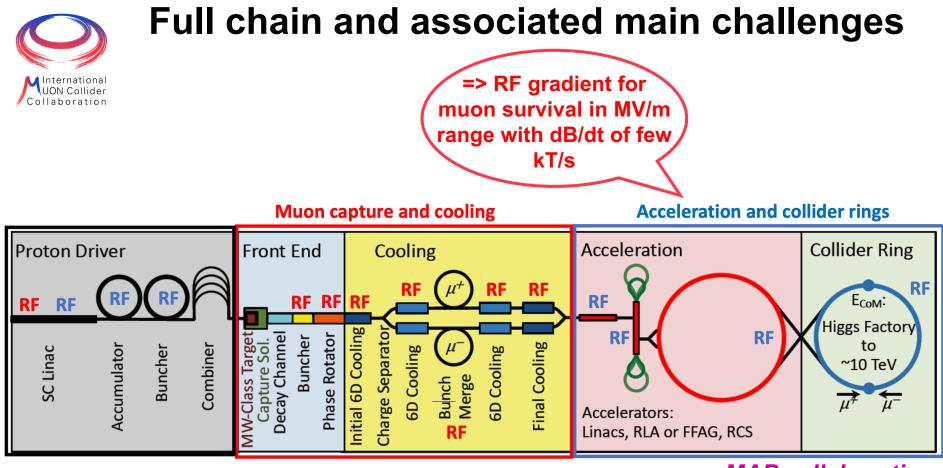

The lifetimes of both positive and negative relativistic ($\gamma = 29.33$) muons have been measured in the CERN Muon Storage Ring with the results $\tau^+ = 64.419$ (58) μs , $\tau^- = 64.368$ (29) μs The value for positive muons is in accordance with special relativity and the measured lifetime at rest: the Einstein time dilation factor agrees with experiment with a fractional error of 2×10^{-3} at 95% confidence. Assuming special relativity, the mean proper lifetime for μ^- is found to be $\tau_0^- = 2.1948(10) \,\mu s$ the most accurate value reported to date. The agreement of this value with previously measured values of τ_0^+ confirms CPT invariance for the weak interaction in muon decay. $\tau = \gamma \tau_0$ ~ 150 ms at 7 TeV



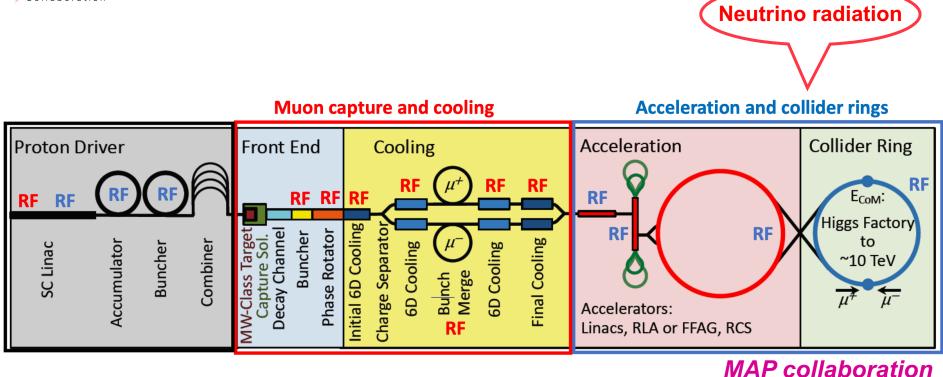
Full chain and associated main challenges



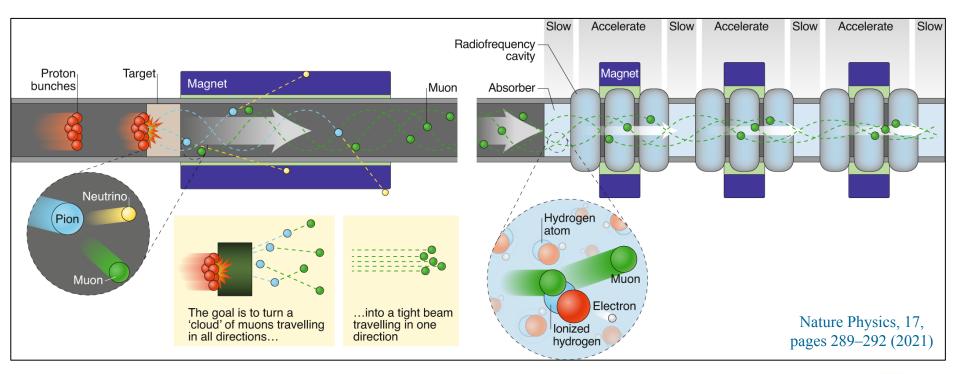



MAP collaboration

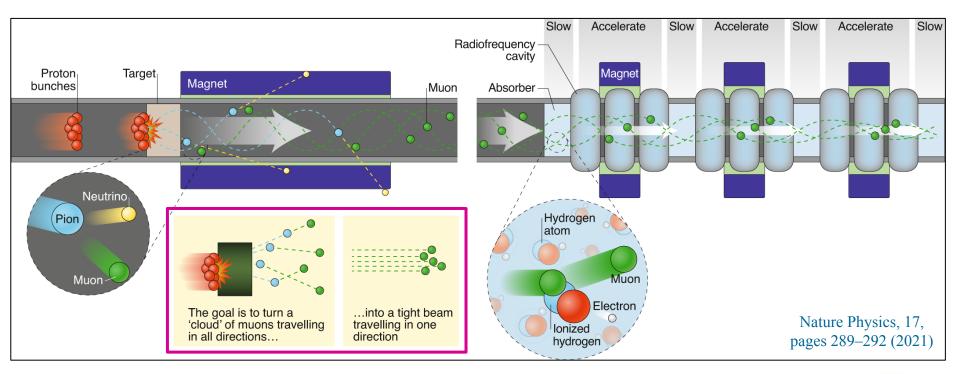
MAP collaboration


MAP collaboration

MAP collaboration



Full chain and associated main challenges


Muon production and cooling

Muon production and cooling

Energy	and luminosity	goals f	or th	e IMCC
MInternational MUON Collider Collaboration		ve target parame from MAP param		
	Param	eter Unit	3 TeV	
	L	10 ³⁴ cm ⁻² s ⁻¹	1.8	
	Ν	1012	2.2	
	f _r	Hz	5	
$ _ _ _ N\sigma_{\delta} $	P _{bear}	m MW	5.3	
$L \propto \gamma B P_{ ext{beam}} rac{N \sigma_{\delta}}{arepsilon_n arepsilon_l}$	C	km	4.5	
$\varepsilon_n \varepsilon_l$		> T	7	
	ε	MeV m	7.5	
	σ _Ε /	E %	0.1	
	σ _z	mm	5	
	β	mm	5	
	ε	μm	25	
	σ _{x,y}	_y μm	3.0	

21

-1

Ener	rgy and luminos	ity go	oals fo	or th	e IM(CC
MInternational UON Collider Collaboration			rget paramet MAP parame		Compariso CLIC at 3 Te	
		Parameter	Unit	3 TeV	10 TeV	14 TeV
		L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
		Ν	1012	2.2	1.8	1.8
		f _r	Hz	5	5	5
$- N\sigma_{\delta}$		P_{beam}	MW	5.3	14.4	20
$L \propto \gamma B P_{\text{beam}} \frac{N \sigma_{\delta}}{\varepsilon_n \varepsilon_l}$		С	km	4.5	10	14
$arepsilon_narepsilon_l$			Т	7	10.5	10.5
		ε	MeV m	7.5	7.5	7.5
		σ_{E} / E	%	0.1	0.1	0.1
		σ	mm	5	1.5	1.07
		β	mm	5	1.5	1.07
		3	μm	25	25	25
		σ _{x,y}	μm	3.0	0.9	0.63

21

-1-2

MInternational VON Collider Collaboration		or tr ers eters	Comparison: CLIC at 3 TeV: 28 MW			
		Parameter	Unit	3 TeV	10 TeV	14 TeV
		L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
		Ν	1012	2.2	1.8	1.8
		f _r	Hz	5	5	5
$N\sigma_{\delta}$	Note: currently consider 3 TeV	P _{beam}	MW	5.3	14.4	20
$L \propto \gamma B P_{\text{beam}} \frac{N \sigma_{\delta}}{\varepsilon_n \varepsilon_l}$	and either 10 or 14 TeV	С	km	4.5	10	14
$\epsilon_n \epsilon_l$			Т	7	10.5	10.5
		ε	MeV m	7.5	7.5	7.5
		σ _E / E	%	0.1	0.1	0.1
		σ _z	mm	5	1.5	1.07
		β	mm	5	1.5	1.07
		3	μm	25	25	25
		σ _{x,y}	μm	3.0	0.9	0.63

21

Ener Ener	gy and luminos	ity go	oals fo	or th	ne IM(
MInternational NUON Collider Collaboration			rget parame [.] MAP param		Compariso CLIC at 3 Te	
		Parameter	Unit	3 TeV	10 TeV	14 TeV
		L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
		Ν	1012	2.2	1.8	1.8
		f _r	Hz	5	5	5
$L \propto \gamma B P_{\text{beam}} \frac{N \sigma_{\delta}}{\varepsilon_n \varepsilon_l}$	Note: currently consider 3 TeV	P _{beam}	MW	5.3	14.4	20
$L \propto \gamma BP_{\text{beam}} - \frac{\sigma}{2}$	and either 10 or 14 TeV	С	km	4.5	10	14
$\varepsilon_n \varepsilon_l$			Т	7	10.5	10.5
		ε	MeV m	7.5	7.5	7.5
		σ _E / E	%	0.1	0.1	0.1
		σz	mm	5	1.5	1.07
		β	mm	5	1.5	1.07
		3	μm	25	25	25
		σ _{x,y}	μm	3.0	0.9	0.63
		Muon lifetime	[turn]	2078	3117	3117

21

-1-

Tai

rget integrated	lluminosities	Tentative tai			Comparison:						
\sqrt{S}	$\int \mathcal{L} dt$		Scaled from MAP parameters CLIC at 3 Te								
3 TeV	1 ab^{-1}	Parameter	Unit	3 TeV	10 TeV	14 TeV					
10 TeV	10 ab^{-1}	L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40					
		Ν	10 ¹²	2.2	1.8	1.8					
14 TeV	20 ab^{-1}	f _r	Hz	5	5	5					
ote: currently c	onsider 3 TeV	P_{beam}	MW	5.3	14.4	20					
nd either 10 or :	14 TeV	С	km	4.5	10	14					
			Т	7	10.5	10.5					
		ε	MeV m	7.5	7.5	7.5					
		σ _E / E	%	0.1	0.1	0.1					
		σ _z	mm	5	1.5	1.07					
		β	mm	5	1.5	1.07					
		3	μm	25	25	25					
		σ _{x,y}	μm	3.0	0.9	0.63					
		Muon lifetime	[turn]	2078	3117	3117					
						charter -					

 $L \propto \gamma B P_{\text{beam}} rac{N \sigma_{\delta}}{arepsilon_n arepsilon_l}$

arget integrated	dluminosities
\sqrt{S}	$\int {\cal L} dt$
$3 { m TeV}$	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	20 ab^{-1}

Note: currently consider 3 TeV and either 10 or 14 TeV

- Tentative parameters achieve goal in 5 years
- FCC-hh to operate for 25 years
- Might integrate some margins
- Aim to have two detectors

Tentative ta Scaled from			Comparison: CLIC at 3 TeV: 28 MW					
Parameter	Unit	3 TeV	10 TeV	14 TeV				
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40				
Ν	10 ¹²	2.2	1.8	1.8				
f _r	Hz	5	5	5				
P _{beam}	MW	5.3	14.4	20				
С	km	4.5	10	14				
	Т	7	10.5	10.5				
ε	MeV m	7.5	7.5	7.5				
σ _E / E	%	0.1	0.1	0.1				
σ _z	mm	5	1.5	1.07				
β	mm	5	1.5	1.07				
3	μm	25	25	25				
σ _{x,γ}	μm	3.0	0.9	0.63				
Muon lifetime	[turn]	2078	3117	3117				

 $L \propto \gamma B P_{\text{beam}} \frac{N \sigma_{\delta}}{\varepsilon_n \varepsilon_l}$

dluminosities
$\int {\cal L} dt$
$1 {\rm ~ab^{-1}}$
$10 {\rm ~ab^{-1}}$
20 ab^{-1}

Note: currently consider 3 TeV and either 10 or 14 TeV

- Tentative parameters achieve goal in 5 years
- FCC-hh to operate for 25 years
- Might integrate some margins
- Aim to have two detectors

Now study if these parameters lead to realistic design with acceptable cost and power

	Tentative target parameters Scaled from MAP parameters CLIC at 3 TeV: 28 MW												
Parameter	Unit	3 TeV	10 TeV	14 TeV									
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40									
Ν	10 ¹²	2.2	1.8	1.8									
f _r	Hz	5	5	5									
P _{beam}	MW	5.3	14.4	20									
С	km	4.5	10	14									
	Т	7	10.5	10.5									
ε	MeV m	7.5	7.5	7.5									
σ _E / E	%	0.1	0.1	0.1									
σz	mm	5	1.5	1.07									
β	mm	5	1.5	1.07									
3	μm	25	25	25									
$\sigma_{x,y}$	μm	3.0	0.9	0.63									
Muon lifetime	[turn]	2078	3117	3117									

UON Collider

Collaborati/

Tentative IMC 3 TeV

(based on MAP potential transmission factors)

		Particle Dilution/Cooling Factor						Beam	Number	Particles	Norm	Norm.	Bunch	Beam
IMC	3 TeV	Transmiss			Transverse emittances		Longitudinal emittances		of bunches	per bunch	transv emittance	long. emittance	length	Power
5	Rep rate (Hz)							GeV	#	E12	µrad-m	mrad-m	mm	w
	Driver	0.153 at 80	GeV					5	1	376.89			600 (2ns)	1.5E+(
Targe	t & Front End	0.0956			17.5			0.255	12	36.04	15000	45	85.2	8.8E+0
	Initial Cooling	0.72		0.2		0.22		0.255	12	25.77	3000	10	85.2	6.3E+
	Charge separator	0.90		1.05	0.003	1.05	2.182	0.255	12	23.19	3150	10	85.2	5.7E+
Cooling	6D cooling before merge	0.72	0.108	0.5		0.20		0.255	12	16.58	1575	2	85.2	4.1E+
8	6D merge	0.88	0.1	2		4.00		0.255	1	14.59	3150	8	92.3	3.0E+
	6D cooling after merge	0.44		0.067		0.23		0.255	1	6.42	211	2	92.3	1.3E+
	Final cooling & Re-Accel	0.61		0.188		52.00		0.255	1	3.91	40	98	92.3	8.0E+
-	Injector Linac	0.92	1	1.05	1	1.05		1.25	1	3.60	42	103	46.2	3.6E+
ê	RLA1	0.92		1.02		1.02		5	1	3.32	42	105	23.1	1.3E+
ara -	RLA2	0.85	268	1.02	159	1.02	1.159	62.5	1	2.83	43	107	23.1	1.4E+
	RCS1	0.90	0	1.02	12	1.02	12	303	1	2.54	44	109	23.1	6.2E+
Acceleration	RCS2	0.92		1.02		1.02		750	1	2.34	45	112	23.1	1.4E+
	RCS3	0.95		1.02		1.02		1500	1	2.22	46	114	23.1	2.7E+
Collider	IP	0.99		1.02		1.02		1500	1	2.20	47	116	5.0	2.6E+
Front E	nd to IP	6.10E-02		3.12E-03		2.58								
)elahaye	Proton b IP transv					-			•					-

-0-

Collaborat UON Collider

Tentative IMC 3 TeV

(based on MAP potential transmission factors)

		Particle		Dilution	/Coc	ling Facto		Beam	Number	Particles	Norm	Norm.	Bunch	Beam
IMC	3 TeV	Transmiss		Transvers		Longitudinal emittances		Energy	of bunches	per bunch	transv emittance	long. emittance	length	Power
5	Rep rate (Hz)							GeV	#	E12	µrad-m	mrad-m	mm	w
	Driver	0.153 at 80	GeV					5	1	376.89			600 (2ns)	1.5E+0
Targe	et & Front End	0.0956					1000	0.255	12	36.04	15000	45	85.2	8.8E+0
	Initial Cooling	0.72		0.2	0.003	0.22		0.255	12	25.77	3000	10	85.2	6.3E+0
	Charge separator	0.90		1.05		1.05	2.182	0.255	12	23.19	3150	10	85.2	5.7E+0
Cooling	6D cooling before merge	0.72	0.108	0.5		0.20		0.255	12	16.58	1575	2	85.2	4.1E+0
8	6D merge	0.88	0.1	2		4.00		0.255	1	14.59	3150	8	92.3	3.0E+0
	6D cooling after merge	0.44	1	0.067		0.23		0.255	1	6.42	211	2	92.3	1.3E+0
	Final cooling & Re-Accel	0.61		0.188		52.00		0.255	1	3.91	40	98	92.3	8.0E+0
-	Injector Linac	0.92	1	1.05		1.05		1.25	1	3.60	42	103	46.2	3.6E+0
e,	RLA1	0.92		1.02		1.02		5	1	3.32	42	105	23.1	1.3E+0
ora	RLA2	0.85	268	1.02	20	1.02	1.159	62.5	1	2.83	43	107	23.1	1.4E+0
Acceleration	RCS1	0.90	0.5	1.02	÷	1.02	12	303	1	2.54	44	109	23.1	6.2E+0
ě	RCS2	0.92		1.02		1.02		750	1	2.34	45	112	23.1	1.4E+0
	RCS3	0.95		1.02		1.02		1500	1	2.22	46	114	23.1	2.7E+0
Collider	IP	0.99		1.02		1.02		1500	1	2.20	47	116	5.0	2.6E+0
Front E	nd to IP	6.10E-02		3.12E-03		2.58								
	Proton b					-			•		IP: 1.5 mrad			

VS.Z

MUON Collider Collaboration

Tentative IMC 3 TeV

(based on MAP potential transmission factors)

		Particle						Beam	Number		Norm	Norm.	Bunch	Beam
IMC	3 TeV	Transmiss		Transvers	emittances		Longitudinal emittances		of bunches	per bunch	transv emittance	long. emittance	length	Power
5	Rep rate (Hz)							GeV	#	E12	µrad-m	mrad-m	mm	W
	Driver	0.153 at 80	GeV					5	1	376.89			600 (2ns)	1.5E+0
Targe	t & Front End	0.0956						0.255	12	36.04	15000	45	85.2	8.8E+0
	Initial Cooling	0.72		0.2	0.003	0.22		0.255	12	25.77	3000	10	85.2	6.3E+0
	Charge separator	0.90		1.05		1.05	2.182	0.255	12	23.19	3150	10	85.2	5.7E+0
Cooling	6D cooling before merge	0.72	0.108	0.5		0.20		0.255	12	16.58	1575	2	85.2	4.1E+04
8	6D merge	0.88	0.1	2		4.00		0.255	1	14.59	3150	8	92.3	3.0E+0
0	6D cooling after merge	0.44		0.067		0.23		0.255	1	6.42	211	2	92.3	1.3E+0
	Final cooling & Re-Accel	0.61		0.188		52.00		0.255	1	3.91	40	98	92.3	8.0E+0
-	Injector Linac	0.92		1.05		1.05	1.159	1.25	1	3.60	42	103	46.2	3.6E+0
ţi	RLA1	0.92		1.02		1.02		5	1	3.32	42	105	23.1	1.3E+0
Bra	RLA2	0.85	268	1.02	159	1.02		62.5	1	2.83	43	107	23.1	1.4E+0
Acceleration	RCS1	0.90	0.0	1.02	12	1.02	12	303	1	2.54	44	109	23.1	6.2E+0
ě	RCS2	0.92		1.02		1.02		750	1	2.34	45	112	23.1	1.4E+0
	RCS3	0.95		1.02		1.02		1500	1	2.22	46	114	23.1	2.7E+0
Collider	IP	0.99		1.02		1.02		1500	1	2.20	47	116	5.0	2.6E+0
Front E	nd to IP	6.10E-02		3.12E-03		2.58								
	Proton b IP transv	in the second				-								

vs. 2

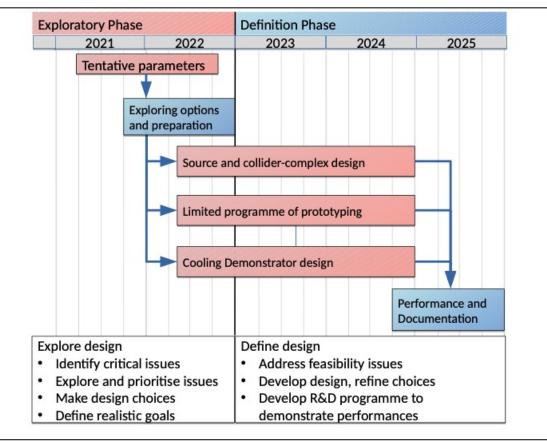
vs. 70

• Interim report already sent to LDG, as foreseen

- Interim report already sent to LDG, as foreseen
- 20-21/09/21: SPC / Council => LDG presents interim report to Council (findings, complete R&D list, internal priorities, resource estimates)

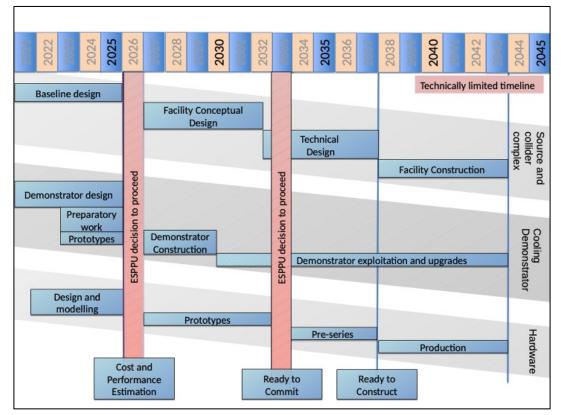
- - :

- Interim report already sent to LDG, as foreseen
- 20-21/09/21: SPC / Council => LDG presents interim report to Council (findings, complete R&D list, internal priorities, resource estimates)
- 06-08/10/21: 3rd and last muon community meeting of the year



- Interim report already sent to LDG, as foreseen
- 20-21/09/21: SPC / Council => LDG presents interim report to Council (findings, complete R&D list, internal priorities, resource estimates)
- 06-08/10/21: 3rd and last muon community meeting of the year
- 06-07/12/21: SPC / Council => LDG provides final report (to be finalised before) to Council (hoping to gain approval)

A timeline for R&D leading to next ESPPU


E. Métral, SUSY 2021 conference, online, 23/08/2021

- - -

A technically limited timeline for 3 TeV construction by 2045

E. Métral, SUSY 2021 conference, online, 23/08/2021

25

- ~

 The muon collider is based on novel concepts and is not as mature as some other lepton collider options such as ILC and CLIC

- ~ :

- The muon collider is based on novel concepts and is not as mature as some other lepton collider options such as ILC and CLIC
- However, it promises a unique opportunity to deliver physics reach at the highest energies on a cost, power consumption and time scale that may improve significantly on other proposed colliders

- The muon collider is based on novel concepts and is not as mature as some other lepton collider options such as ILC and CLIC
- However, it promises a unique opportunity to deliver physics reach at the highest energies on a cost, power consumption and time scale that may improve significantly on other proposed colliders
- Previous studies, in particular the MAP study, have demonstrated feasibility of the facility across the parameter range required

- The muon collider is based on novel concepts and is not as mature as some other lepton collider options such as ILC and CLIC
- However, it promises a unique opportunity to deliver physics reach at the highest energies on a cost, power consumption and time scale that may improve significantly on other proposed colliders
- Previous studies, in particular the MAP study, have demonstrated feasibility of the facility across the parameter range required
- A number of proof-of-principle experiments and component tests have been carried out to practically demonstrate the underlying technologies

 The Muon Beam Panel has identified a viable baseline parameter set and a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045

- The Muon Beam Panel has identified a viable baseline parameter set and a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045
- Ongoing developments in underlying technologies will be exploited as they arise in order to ensure the best possible performance

- The Muon Beam Panel has identified a viable baseline parameter set and a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045
- Ongoing developments in underlying technologies will be exploited as they arise in order to ensure the best possible performance
- This R&D effort will allow the next ESPPU to make fully informed decisions

- The Muon Beam Panel has identified a viable baseline parameter set and a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045
- Ongoing developments in underlying technologies will be exploited as they arise in order to ensure the best possible performance
- This R&D effort will allow the next ESPPU to make fully informed decisions
- Based on these decisions a significant ramp-up of resources could be made to accomplish construction by 2045 and exploit the enormous potential of the muon collider

MInternational UON Collider Collaboration

Quite some challenging and interesting work ahead of us!

Thank you for your attention