

Measuring the quark-gluon plasmas viscosities by colliding heavy ions on lxplus

Based on *Trajectum* with Govert Nijs 2010.15130 (PRL), 2010.15134 (PRC) with Govert Nijs, Umut Gursoy and Raimond Snellings

Roman excavations in Utrecht (from Trajectum, or bridge) in 1929

Wilke van der Schee EOS forum 8 December 2021

Heavy ions as a laboratory for non-Abelian quantum field theory (QCD)

- 1. What are the fundamental degrees of freedom of the Quark-Gluon Plasma?
- 2. Is QGP strongly coupled? And at what energy or length scale?
- 3. At what timescale does a non-Abelian gauge theory thermalise?

Standard model of heavy ion collisions

Initial stage (9)

Subnucleonic structure? (7)

Non-thermal flow? (2) for time τ with varying speed (*new*)

Fluctuations? (1)

Viscous hydrodynamics (9)

Shear viscosity (3)

Bulk viscosity (3)

Second order transports: 3 (new)

Cascade of hadrons (1)

Convert quark-gluon plasma at T_{switch} to particles following Boltzmann distribution (particlization, 1)

Subtle: viscous corrections

Evolve particles with hadronic code: SMASH

Sort events in centrality classes (1) (new)

Trajectum

- Quite straightforward to use (see param file, right)
 - Second order hydro + freeze-out
 - SMASH

- 2. Includes analyse routine
 - Parallelised: can analyse unlimited number of events
 - Most soft observables are currently implemented


```
debugoutput=true
   numthreads=2
entropyacceptanceprobability{
  24:0.0
   24.5:0.05
   25.5:0.05
   26:0.0
   100:0.0
trentosubstructurePbPb{
   dmin=0.63933
   w=0.701919
   sigmann=70.0
   sigmafluct=0.73579
   p=0.14388
   q=1.0
   Eref=0.2
   norm=23.507
   freestreamingreferencetime=1.1708
   freestreamingvelocity=0.62672
   weaktostrong=0.0
   nref=20
   alpha=0
   nc=3.2747
   voverw=0.4892041602706295
secondorderhydro{
   numlatticesites=166.0
   latticesize=33.2
musclsolverktminmodfastmidpoint{
   cflconstant=0.08
_atticeEOStempdepDuke{
   shearhrg=0.0895066
   shearmin=0.0895066
   shearslope=0.43252
   shearcry=0.231195
   shearrelaxationtime=6.318855
   bulkmax=0.0030138
   bulkT0=0.21471
   bulkwidth=0.10906
   bulkrelaxationtime=0.0687
   deltapipiovertaupi=1.333333333333333
   phi7overpressure=0.128571
   taupipiovertaupi=1.61033
   lambdapiPiovertaupi=1.2
   deltaPiPiovertauPi=0.66666666
   lambdaPipiovertauPi=1.6
   philoverpressure=0
   phi3overpressure=0
   phi6overpressure=0
cooperfrvehadronizer{
   freezeouttemp=153.456
   rapidityrange=0.1
```

output=out format=smash f0500=false numevents=1

seed=7398984.747399307

Design

Experimental observables: a wealth of data

- 1. Yields, spectra, identified $v_n\{2\}$ versus p_T , pPb and PbPb (514 datapoints)
- 2. First study with a comprehensive analysis including p_T -differential observables

Experimental observables: a wealth of data

- L. Yields, spectra, identified $v_n\{2\}$ versus p_T , pPb and PbPb (514 datapoints)
- 2. First study with a comprehensive analysis including p_T -differential observables

1. Some parameters better constrained than others

- Correlations add important information,
 e.g. width constrained much more
 accurately if cent_{norm} is known
- \circ Similar for $\mathsf{d}_{\mathsf{min}}$ and $\mathsf{\sigma}_{\mathsf{fluct}}$

Posterior distributions – shear viscosity

1. Shear viscosity consistent with previous work

- More data, but also enlarged model \rightarrow similar constraint on η/s
- New JETSCAPE slightly broader band (larger priors, single PbPb energy but including RHIC)
- Consistent with state-of-the-art pQCD computations

J. Bernhard, S. Moreland and S. Bass, Nature Physics (2019)

Jacopo Ghiglieri, Guy Moore and Derek Teaney QCD Shear Viscosity at (almost) NLO (2018)

Posterior distributions – bulk viscosity:

Much smaller, even consistent with zero

J. Bernhard, S. Moreland and S. Bass, Nature Physics (2019)

Bulk viscosity, varied several aspects:

- More limited parameter set
 - All versus only `Duke'
- Include or not include p-Pb collisions
- Include p_T-differential observables

Extremely ultra-central collisions

- 1. Interesting to go to extremely ultra-central collisions:
 - \sim Keep size fixed, but increase temperature by means of fluctuations \rightarrow increased radial flow \rightarrow mean pt
 - Trajectum has entropy acceptance feature, but still statistically non-trivial (33M Trento events and 0.5M hydro events used)
 - Multiplicity matches well with ALICE V0 (5.02 data not available due to pile-up)
 - Small but significant dip in pion mean transverse momentum at 1-2%; explanation?

Trajectum and EOS

- 1. Very happy with performance
- 2. In beginning some things not entirely clear
 - When overwriting files hidden files took a lot quota
 - eos cp, though cp also works
 - How limited are we with disk space? (now we compress everything, 50 TB)

80.0+69.0 60.0-

88.I-88.5

- 3. Very convenient:
 - In principle seems to work as well as AFS (often), much more disk space
 - Sometimes difference with AFS not so clear

