Introduction to Topological Insulators

D. Carpentier (Ecole Normale Supérieure de Lyon)

Collaboration:

Lyon: P. Adroguer (PhD), E. Orignac

Bordeaux : S. Burdin, A. Buzdin, J. Cayssol

Berkeley: J. Moore, A. Vishwanath

CERN, Jan. 2011

(Integer) Quantum Hall Effect: Anomalous Insulator

2DEG (Heterojunction GaAs/AlGaAS)

No longitudinal resistivity: Insulator

Quantum Hall Effect: the edge states

Transport Properties of Quantum Hall Effect: described by Edge States

Complete characterization of IQHE

Chirality + n → conductance matrix → multi-terminal conductances

magnetic field

No longitudinal resistivity: Insulator

M. Büttiker, PRB 38 (1988)

Robustness of edges states (or n)

M. Büttiker, PRB 38 (1988)

Quantum Hall Effects:

- break Time reversal symmetry (by B)
- → edges states are chiral
- integer $n \Rightarrow$ counts number of edge modes
- edges modes come by pair (spin symmetry)

Robustness of edge states:

no backscattering because chiral modes

⇒ all n modes are ballistic

Robustness of n : chirality of the modes (T-breaking)

no possible generalization?

Quantum Hall Effect: a Topological Insulator

Thouless et al.. PRL **49** (1982)

$$\sigma_{xy} = n \frac{e^2}{h}$$

Alternative description : n is a topological invariant

Property of the filled band / ensemble of 1 particle waves functions $(u_m(\mathbf{k}))$

Insensitive to small changes of the filled band / Hamiltonian :

- disorder
- geometry
- weak interactions
- etc

→ Notion of Topological Insulator

Topological invariant?

Gaussian curvature : $\kappa = 1/(R_1R_2)$

For closed surface: Gauss-Bonnet theorem

$$g = 1$$

$$\int dS \ \kappa = 2\pi(2 - 2g)$$

Integral of curvature: depends only on «global properties» (topology), insentitive to small changes / deformation of surface

for more complex surfaces (vector bundles): chern numbers

Quantum Hall Effect: TKNN invariant

Thouless et al.. PRL 49 (1982)

- Bulk Gap \Rightarrow focus on Ground State $(u_m(\mathbf{k}))$
- Topological Order: the TKNN invariant

$$\sigma_{xy} = n \frac{e^2}{h} \qquad n = \frac{1}{2\pi} \int_{BZ} d^2\mathbf{k} \underbrace{\nabla \times \mathcal{A}}_{\text{(Berry's) curvature}}$$

$$\mathcal{A} = i \sum_{m} \langle u_m | \nabla_{\mathbf{k}} | u_m \rangle$$

Brillouin Zone

n: integral of curvature = topological (Chern) number

 $u_m(\mathbf{k})$: 1 particule state of occupied band

- ullet σ_{xy} is given by a topological number
- ightharpoonup insensitive to perturbations of the $u_m(\mathbf{k})$ (or Hamiltonian)

Topological order ⇔ (robust) edge states

Topological invariant: n

Robustness of top. invariant n

→ robustness of edge states (edges remain ballistic)

Other topological insulators?

Quantum Hall Effects:

- break Time reverseal symetry (by B)
- edges states are chiral
- top invariant: integer n ⇒ counts number of edge modes at interface
- edges modes come by pair (spin symmetry)

T reversal breaking necessary for topological insulators?

No ⇒ new class of topological insulators discovered

(no T breaking)

1. New 2D phase: Quantum Spin Hall Effect

proposed theoretically in 2005

Kane and Mele, PRLs **95** (2005)
Bernevig, Hugues and Zhang, Science **314** (2006)

▶ found experimentally in 2007

König et al., Science 318 (2007)

Fu, Kane et Mele, PRL **98** (2007)

2. New 3D phase: 3D Topological Insulators

proposed theoretically in 2007

Moore and Balents, PRB **75** (2007) Roy, PRB **79** (2009)

▶ Experimental tests in 2008

Fu and Kane, PRB **76** (2007)

Hsieh et al., **95** (2008)

New topological insulators : Spin Orbit Induced

Crucial ingredient: spin orbit interaction

$$H_{SO}^{eff} = \lambda(\mathbf{p} \times \nabla V).\mathbf{S}$$

- momentum dependent force : for fixed spin, analogous to magnetic field B
- opposite force for opposite spins
- energy ±μB depending on spin of electrons
- spin-orbit strongly enhanced for atoms of large Z (look at the bottom of table)
- T reversal symmetry: reverses both p and S!
 - →does not break T-reversal symmetry
- first consequence : spin hall effect

Quantum Spin Hall Effect = 2 copies of IQHE

- For strong enough SO interaction in 2D :
- 2 copies of IQHE with opposite magnetic field B_{eff}. One for each spin.
- Insulating bulk (for each spin)
- Does not break Time Reversal Symmetry (exchange spin and momentum)

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005) B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

.. But need to open the gap for each spin in the first place!

Quantum Spin Hall Effect: Topological Order

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)

«Protected Edge States»: robust properties, remain ballistic

with 2 modes:

with 4 modes:

2 branches, but ≠ spins : no backscattering ⇒ topological order

Z₂ Topological index for QSHE : yes / no

Topological Invariance in 2D

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)

 Γ_2

 Γ_3

Time Reversal Symmetry : Θ antinunitary op. $(\langle \Theta \psi | \Theta \phi \rangle = \langle \phi | \psi \rangle)$

for spin 1/2 :
$$\Theta \begin{pmatrix} \psi_\uparrow \\ \psi_\downarrow \end{pmatrix} = \begin{pmatrix} \psi_\downarrow^* \\ -\psi_\uparrow^* \end{pmatrix}$$
 , $\Theta = e^{i\pi S_y} K$, $\Theta^2 = -1$

Kramers theorem : for time reversal invariant Hamiltonian ($[H,\Theta]=0$) all eigenstates come (at least) by pairs of time reversed states (otherwise $\Theta^2|u\rangle=|\lambda|^2|u\rangle$)

Simplest Case : only 2 energy bands $|u_{i=1,2}(\mathbf{k})\rangle$ Reciprocal Lattice Vectors $\mathbf{G}=\mathsf{n}_1\mathbf{G}_1+\mathsf{n}_2\mathbf{G}_2$: represented on a square 4 Time-Reversal Invariant Momenta in the BZ: $\Gamma_{1...4}$ (invariant by k \rightarrow -k up to Bravais vector)

Focus on points $m{\Lambda}_m$ (if any) where $\Theta|u_j(m{\Lambda}_m)$ is orthogonal to $|u_j(m{\Lambda}_m)
angle$

 $oldsymbol{\Lambda}_m$ come by pair $(oldsymbol{\Lambda}_m, -oldsymbol{\Lambda}_m)$

2 pairs can annihilate each other by smooth deformation of $|u_{i=1,2}(\mathbf{k})\rangle$ by $\Lambda_1 \to -\Lambda_2)$ Single pair cannot annihilate (through Γ_1)

Parity of Number of pairs $(\Lambda_m, -\Lambda_m)$: topological invariant of $|u_{i=1,2}(\mathbf{k})\rangle$

(Twisted Real Fiber Bundle)

Topological Invariance in 2D

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)

Time Reversal Symmetry : Θ antinunitary op. $(\langle \Theta \psi | \Theta \phi \rangle = \langle \phi | \psi \rangle)$

for spin 1/2 :
$$\Theta \begin{pmatrix} \psi_\uparrow \\ \psi_\downarrow \end{pmatrix} = \begin{pmatrix} \psi_\downarrow^* \\ -\psi_\uparrow^* \end{pmatrix}$$
 , $\Theta = e^{i\pi S_y} K$, $\Theta^2 = -1$

Kramers theorem : for time reversal invariant Hamiltonian ($[H,\Theta]=0$) all eigenstates come (at least) by pairs of time reversed states (otherwise $\Theta^2|u\rangle=|\lambda|^2|u\rangle$)

Simplest Case : only 2 energy bands $|u_{i=1,2}(\mathbf{k})\rangle$ Reciprocal Lattice Vectors $\mathbf{G} = (\mathsf{n}_1\mathbf{G}_1 + \mathsf{n}_2\mathbf{G}_2)/2$: represented on a square 4 Time-Reversal Invariant Momenta in the BZ : $\Gamma_{1...4}$ (invariant by $\mathsf{k} \to \mathsf{-k}$ up to Bravais vector)

Consider the matrix $m_{ij} = \langle u_i(\mathbf{k})|\Theta|u_j(\mathbf{k})\rangle = \epsilon_{ij}P(\mathbf{k})$ $P(\mathbf{k})$: Pfaffian \rightarrow generalization to higher number of bands $|P(\mathbf{\Gamma_i})| = 1$ at TRIM $\Gamma_{1...4}$ Invariant Δ given by winding of phase of $P(\mathbf{k})$ along path C

$$\Delta = \frac{1}{2\pi i} \oint_C d\mathbf{k}. \nabla_{\mathbf{k}} log(P(\mathbf{k}))$$

Γ₂ Γ₃ C Γ₄

But not very practical...

Topological Invariance in 2D

L. Fu and C.L.Kane, PRB 74, 195312 (2006) L. Fu and C.L.Kane, PRB 76, 045302 (2007)

Г3

Previous definition :
$$m_{ij} = \langle u_i(\mathbf{k})|\Theta|u_j(\mathbf{k})\rangle$$

 $P(\mathbf{k}) = Pf(m_{ij})$

Top. Invariant
$$\Delta$$
: winding of phase of P, $\Delta = \frac{1}{2\pi i} \oint_C d\mathbf{k} \cdot \nabla_{\mathbf{k}} log(P(\mathbf{k}))$

Alternative definition : matrix $w_{ij}=\langle u_i(-\mathbf{k})|\Theta|u_j(\mathbf{k})\rangle$ w is unitary (|det w|=1)

w and m coincide at the TRIM $\Gamma_{1\dots 4}$

$$(-1)^{\Delta} = \prod_{i=1}^{i=4} \frac{\sqrt{\det(w(\mathbf{\Gamma}_i)}}{\operatorname{Pf}(w(\mathbf{\Gamma}_i))} \quad \text{where} \quad \delta_i = \frac{\sqrt{\det(w(\mathbf{\Gamma}_i)}}{\operatorname{Pf}(w(\mathbf{\Gamma}_i))} = \pm 1$$

$$\xi_{2m}(\Gamma_i) := \pm 1$$
 Parity eigenvalue of **filled** band 2m (and its Kramers degenerate 2m-1)

Simple tool to look for topological nature of insulators

Topological Invariance: from 2D to 3D

In 2D:
$$(-1)^{\Delta} = \prod_{i=1}^{i=4} \frac{\sqrt{\det(w(\mathbf{\Gamma}_i)}}{\operatorname{Pf}(w(\mathbf{\Gamma}_i))} \quad \text{with} \quad w_{ij} = \langle u_i(-\mathbf{k})|\Theta|u_j(\mathbf{k})\rangle$$

In 3D : 8 distincts TRIM $\Gamma_{1...8} = (n_1 \mathbf{G}_1 + n_2 \mathbf{G}_2 + n_3 \mathbf{G}_3)/2$ $n_j = 0,1$

$$3$$
 G dependant top. invariant : $(-1)_i^{\nu} = \prod_{\Gamma_j/n_i=1} \frac{\sqrt{\det(w(\Gamma_j))}}{\operatorname{Pf}(w(\Gamma_j))}$

1 top. invariant :
$$(-1)^{\nu_0}=\prod_{i=1}^{i=8} \frac{\sqrt{\det(w(\Gamma_i))}}{\operatorname{Pf}(w(\Gamma_i))}$$

L. Fu, C.L.Kane, and E.J. Mele PRL 98, 106803 (2007) J.E. Moore and L. Balents, PRB 75, 121306 (2007) R. Roy, cond-mat/0607531

Possible existence of 3D topological insulators

Topological Invariance from the edges

In 1D:

2 T-reversal symmetric momenta $\Gamma_a = 0$, $\Gamma_b = \pi/a$

invariants : Δ whether edge Fermi line cuts (odd times) the line $\Gamma_a \to \Gamma_b$

In 2D:

invariants : $v_{1...3}$ whether edge Fermi surface cuts (odd

times) the line $\Gamma_1 \rightarrow \Gamma_b$

NEW invariant : vo whether Fermi surface encloses an

odd number of Γ_a

«weak» topological insulator, $v_0 = 0$ (layered 2D TI)

«strong» topological insulator, $v_0 = 1$, not layered

Topological Invariance from the edges

In 1D:

2 T-reversal symmetric momenta $\Gamma_a = 0$, $\Gamma_b = \pi/a$

invariants : Δ whether edge Fermi line cuts (odd times) the line $\Gamma_a \to \Gamma_b$

In 2D:

invariants: $v_{1..3}$ whether edge Fermi surface cuts (odd

times) the line $\Gamma_1 \rightarrow \Gamma_b$

NEW invariant : ν_0 whether Fermi surface encloses an

odd number of Γ_a

3D Topological Insulators

no violation of Fermion doubling theorem : 2nd cone is on the other side!

Topological Invariance and Band Inversion

With inversion symmetry :
$$\delta_i = \prod_{m=1}^N \xi_{2m}(\Gamma_i)$$
 over 2N occupied bands

$$\xi_{2m}(\mathbf{\Gamma}_i) = \pm 1$$
:

Parity eigenvalue of filled band 2m

Topological Invariant :
$$(-1)^{\nu_0} = \prod_{i=1}^{i=8} \delta_i$$

Most Insulator are trivial (not topological)

General strategy in seeking topological insulators:

- ▶ find a compound with a band inversion with respect to known insulator, induced by strong spin orbit
- ▶ if inversion of bands with opposite parity eigenvalue : v₀ will switch to non trivial value
- Candidate for Topological Insulators

HgTe / CdTe Heterojunctions

- Band Structure of HgTe: band inversion (strong spin-orbit)
- CdTe: no band inversion

HgTe / CdTe Heterojunctions

How to probe? Conductance Measurements

König et al., Science **318** (2007)

2 Terminal Conductance

Beyond 2 terminals : Buttiker-Landauer descriprion

Roth et al., Science **325** (2009)
P. Adroguer, D. Carpentier, unpublished

Consider a Hall bar

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{pmatrix} = \frac{e^2}{h} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \\ \mu_5 \\ \mu_6 \end{pmatrix}$$

• Series of algebraic Conductance G_{12,34}, ...

Conductance Measurements

Roth et al., Science **325**, 294 (2009)

 $d=7,5nm > d_c=6,3nm$ V* : gate voltage T=10mK

Conductance Measurements

3D Topological Insulators

First proposed candidate: Bi_{1-x}Sb_x
 again band inversion
 Fu and Kane PRB 76 (2007)

- Second generation 3D Topological Insulators: Bi₂Se₃, Bi₂Te₃, Sb₂Te₃, ...

 Zhang H. et al., Nat. Phys. **5**, 438 (2009)
- Reference material: Bi₂Se₃
 - single Dirac cone at the surface
 - stoichiometric
 - ▶ large band gap : 0.3 eV (3600K)

How to probe experimentally?

- ▶ existence of surface states : (spin resolved) ARPES Hasan's group (many papers)
- transport ... problematic Checkelsky et al., PRL. 103, 246601 (2009)

Measure Energy, momentum, and spin of surface electrons

observation of Dirac cone in the bulk gap

Momentum - Spin locking: helical Dirac fermions

Ca bulk doping

Hsieh et al., Nature 460, 1101 (2009)

Surface doping by NO₂ adsorption (hole doping)

Hsieh et al., Nature 460, 1101 (2009)

Magnetic impurities open a gap for the surface states

Energy (eV)

Xia et al. Nat. Physics **5**, 398 (2009) Hsieh et al., Nature **460**, 1101 (2009)

Transport measurement on Bi₂Se₃

Checkelsky et al. PRL, 103 (2010)

Bi₂Se₃: good candidate

- ▶ Large band gap : 300 meV
- ▶ Single Dirac surface state
- ... but metal! ... μ_b in the conduction band
- ▶chemical doping by Ca : Ca_xBi_{2-x}Se₃
- ▶ Residual transport by bulk states?

Various Ca doping

bulk sample (2x2x0.05 mm)

New materials: ternary compounds

Half Heusler semiconducting compounds:

Lin et al., Nature Materials 9, 546 (2010) Chadov et al., Nature Materials 9, 541 (2010)

(X₂YZ or XYZ composition with X, Y the transition or rare-earth metals and Z the main-group element)

- band inversion found in ab initio studies for lots of them
- ▶topological insulators coexisting with other order
 - LnPtBi (Ln=Nd, Sm, Gd, Tb, Dy): TI + magnetism
 - YbPtBi : heavy fermion TI : topological Kondo insulator (???)
 - LaPtBi : TI + superconductivity (?)
- ▶ Problem: not insulators...

Z. Ren *et al.*, arxiv:1011.2846

J. Xiong *et al.*, arxiv:1101.1315

- ► Topological insulator with large bulk resistivity (6 Ωcm at 4 K)
- ► Signature (SdH oscillations) of metallic edge transport with high mobility (µs ~ 2,800 cm²/Vs)

The forgotten subjects ...

Anomalous axion electrodynamics

Qi, Hughes and Zhang, PRB **78** (2008) Essin, Moore and Vanderbilt, PRL **102**, 146805 (2009)

 Classifications of topological insulators / superconductors : the 10-fold way, via study of disorder effect (Non Linear Sigma)

> Schynder et al., PRB **78** (2008) Kitaev, AIP Conf. Proc. **1134**, 22 (2009)

the quest for Majorana fermions at Topological Insulator / Superconductor interface

> Fu and Kane, PRL **100**, 096409 (2008) Akhmerov *et al.*, PRL **102**, 216404 (2009)

Probing helical edges states by Cooper pairs injection

P. Adroguer et al., PRB82, 081303 (2010)

Topological Superconductivity /Superfluidity

Wray et al., (2008) Hor et al., PRL **104**, 057001 (2010)

Thank You for your attention!