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Quantum Hall Effect : the edge states

Transport Properties of Quantum Hall 
Effect: described by Edge States

➡ Complete characterization of IQHE 
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Robustness of edges states (or n)

Quantum Hall Effects : 

• break Time reversal symmetry (by B)

➡ edges states are chiral 

• integer n ⇒ counts number of edge modes

• edges modes come by pair (spin symmetry) 

B

Robustness of edge states : 

no backscattering because chiral modes 

⇒ all n modes are ballistic +kF-kF

Only 1 branch  (chiral)

Standard 1D Model : 2 branches

backscattering ↔ localization

Robustness of n : chirality of the modes 
(T-breaking)

no possible generalization ?

M. Büttiker, PRB 38 (1988)
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Quantum Hall Effect : a Topological Insulator

➡ Notion of Topological Insulator

Thouless et al.. PRL 49 (1982)

σxy = n
e2

h
Alternative description : n is a topological invariant

(um(k))

Describes properties of an insulator 
(gap necessary)

Property of the filled band / ensemble 
of 1 particle waves functions

Insensitive to small changes of the 
filled band / Hamiltonian : 

‣ disorder
‣ geometry
‣ weak interactions
‣ etc

5mercredi 19 janvier 2011



κ = 1/(R1R2)

�
dS κ = 2π(2− 2g)

g = 0 g = 1 g = 3

Topological invariant ?
Topological invariants

Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature
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Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature

κ = (r1r2)−1

�

M
κ dA = 2πχ = 2π(2− 2g)

Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature

κ = (r1r2)−1

�

M
κ dA = 2πχ = 2π(2− 2g)

Gaussian curvature : 

For closed surface : Gauss-Bonnet theorem

Integral of curvature : depends only on «global properties» (topology), 
insentitive to small changes / deformation of surface

for more complex surfaces (vector bundles) : chern numbers
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Quantum Hall Effect : TKNN invariant

• Bulk Gap ⇒ focus on Ground State 

• Topological Order : the TKNN invariant

Thouless et al.. PRL 49 (1982)

σxy = n
e2

h
(Berry’s) curvature

um(k) : 1 particule state of occupied band

Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature

κ = (r1r2)−1

�

M
κ dA = 2πχ = 2π(2− 2g)

Brillouin Zone

um(k)

σxy•           is given by a topological number 

➡ insensitive to perturbations of the                        (or Hamiltonian)um(k)

n : integral of curvature = topological (Chern) number

(um(k))
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Topological order ⇔ (robust) edge states
H. Buhmann

Edge Channels

magnetic field

-

g

-

-

- -

-

hi l d t tchiral edge states

Filled Band

Empty Band

gap

Filled Band

Empty Band

gap

Filled Band

Empty Band

gap

Topological invariant : n
n ≠ 0 n = 0n = 0

Edge States

Robustness of top. invariant n 
↔ robustness of edge states    (edges remain ballistic)
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Other topological insulators ? 

Quantum Hall Effects : 

• break Time reverseal symetry (by B)

➡ edges states are chiral 

• top invariant : integer n ⇒ counts number of edge modes at interface

• edges modes come by pair (spin symmetry) 

B

T reversal breaking necessary for topological insulators ?  

No ⇒ new class of topological insulators discovered
(no T breaking)

1. New 2D phase : Quantum Spin Hall Effect 
‣proposed theoretically in 2005

‣found experimentally in 2007

2. New 3D phase : 3D Topological Insulators
‣proposed theoretically in 2007

‣Experimental tests in 2008

Kane and Mele, PRLs 95 (2005)
Bernevig, Hugues and Zhang, Science 314 (2006)

König et al., Science 318 (2007)

Fu, Kane et Mele,  PRL 98 (2007)
Moore and Balents, PRB 75 (2007)
Roy, PRB 79 (2009)
Fu and Kane, PRB 76 (2007)

Hsieh et al.,  95 (2008)
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Crucial ingredient : spin orbit interaction

‣ momentum dependent force : for fixed spin, analogous to magnetic field B 

‣ opposite force for opposite spins 

‣ energy ±μB depending on spin of electrons

‣ spin-orbit strongly enhanced for atoms of large Z (look at the bottom of table)

• T reversal symmetry : reverses both p and S ! 

➡does not break T-reversal symmetry

• first consequence : spin hall effect

New topological insulators : Spin Orbit Induced

H
eff

SO
= λ(p×∇V ).S

!"##$%&&'()$"*+$,-.*$!"##$%&&'()

!% ,!%

Dyakonov and Perel, Phys. Lett. 35A (1971)

Hall effect Spin Hall effect
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Quantum Spin Hall Effect = 2 copies of IQHE

• For strong enough SO interaction in 2D : 

• 2 copies of IQHE with opposite magnetic 
field Beff. One for each spin. 

• Insulating bulk (for each spin)

• Does not break Time Reversal Symmetry 
(exchange spin and momentum)

H. Buhmann

Quantum Spin Hall Effect

• Gedankenexperiment:

B
two copies of QH states, 

one for each spin component, each 

seeing the opposite magnetic field

eff
B

seeing the opposite magnetic field. 

B
eff

B

H. Buhmann

Quantum Spin Hall Effect

• Gedankenexperiment:

two copies of QH states, 

one for each spin component, each 

seeing the opposite magnetic fieldseeing the opposite magnetic field,

are united in one sample and form

This new state does not break

helical edge states. 

This new state does not break 

the time reversal symmetry, 

and can exist without any 

external magnetic field.external magnetic field.

!Quantum Spin Hall State

consisting of two counter propagating spin polarized edge channelsconsisting of two counter propagating spin polarized edge channels.

protected by time reversal symmetry (Kramer‘s pair)

and an insulating bulk

.. But need to open the gap for each spin in the first place !  

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)
B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)
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Quantum Spin Hall Effect : Topological Order

‣ «Protected Edge States» : robust properties, remain ballistic

 with 2 modes : 

 Z2 Topological index for QSHE : yes / no

+kF-kF

↑↓ ?

2 branches, but ≠ spins : no backscattering
⇒ topological order

Backscattering allowed ⇒ No topological order

+kF-kF

↑↓↑ ↓
 with 4 modes : 

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)
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Θ
�

ψ↑
ψ↓

�
=

�
ψ∗
↓

−ψ∗
↑

�

Λm Θ|uj(Λm� |uj(Λm)�

Time Reversal Symmetry :        antinunitary op. (                         ) 

for spin 1/2 :                                         ,                        ,  

Kramers theorem : for time reversal invariant Hamiltonian (                 )                         
all eigenstates come (at least) by pairs of time reversed states 
(otherwise                               )

Simplest Case : only 2 energy bands 
Reciprocal Lattice Vectors G = n1G1 + n2G2 : represented on a square
4 Time-Reversal Invariant Momenta in the BZ : Γ1...4 

(invariant by k →-k up to Bravais vector)

at Γi :                    equivalent to                 up to U(2) rotation 

Focus on points         (if any) where                     is orthogonal to                 

       come by pair 
2 pairs can annihilate each other by smooth deformation of                    by 
Single pair cannot annihilate (through Γ1 )

Parity of Number of pairs                       : topological invariant of 

Topological Invariance in 2D

Γ1

Γ2 Γ3

Γ4

Θ �Θψ|Θφ� = �φ|ψ�

Θ2 = −1Θ = eiπSyK

Θ2|u� = |λ|2|u�

[H,Θ] = 0

|ui=1,2(k)�

Θ|uj(Γi)� |uj(Γi)�

Λm (Λm,−Λm)
|ui=1,2(k)� Λ1 → −Λ2)

(Λm,−Λm) |ui=1,2(k)�
(Twisted Real Fiber Bundle)

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)
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Θ
�

ψ↑
ψ↓

�
=

�
ψ∗
↓

−ψ∗
↑

�

mij = �ui(k)|Θ|uj(k)� = �ijP (k)

Time Reversal Symmetry :        antinunitary op. (                         ) 

for spin 1/2 :                                         ,                        ,  

Kramers theorem : for time reversal invariant Hamiltonian (                 )                         
all eigenstates come (at least) by pairs of time reversed states 
(otherwise                               )

Simplest Case : only 2 energy bands 
Reciprocal Lattice Vectors G = (n1G1 + n2G2)/2  : represented on a square
4 Time-Reversal Invariant Momenta in the BZ : Γ1...4 

(invariant by k →-k up to Bravais vector)

Consider the matrix  
P(k) : Pfaffian →generalization to higher number of bands
                      at TRIM  Γ1...4

Invariant Δ  given by winding of phase of P(k) along path C
  

But not very practical... 

Topological Invariance in 2D

Θ �Θψ|Θφ� = �φ|ψ�

Θ2 = −1Θ = eiπSyK

Θ2|u� = |λ|2|u�

[H,Θ] = 0

|ui=1,2(k)�

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)

|P (Γi)| = 1
C

Γ1

Γ2 Γ3

Γ4

∆ =
1

2πi

�

C
dk.∇klog(P (k))
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wij = �ui(−k)|Θ|uj(k)�

Topological Invariance in 2D
L. Fu and C.L.Kane, PRB 74, 195312 (2006)
L. Fu and C.L.Kane, PRB 76, 045302 (2007)

Previous definition :  

                     Top. Invariant Δ : winding of phase of P,                   

Alternative definition : matrix 
       w is unitary  (|det w|=1) 
       w and m coincide at the TRIM Γ1...4 

                                                                                 where 

With inversion symmetry :                                    over 2N occupied bands 

                                                         
                   :            Parity eigenvalue of filled band 2m 
                                (and its Kramers degenerate 2m-1)

➠ Simple tool to look for topological nature of insulators

mij = �ui(k)|Θ|uj(k)�
P (k) = Pf(mij)

∆ =
1

2πi

�

C
dk.∇klog(P (k))

(−1)∆ =
i=4�

i=1

�
det(w(Γi)

Pf(w(Γi))

Γ1

Γ2 Γ3

Γ4

δi =
�

det(w(Γi)
Pf(w(Γi))

= ±1

δi =
N�

m=1

ξ2m(Γi)

ξ2m(Γi) = ±1
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wij = �ui(−k)|Θ|uj(k)�

(−1)ν0 =
i=8�

i=1

�
det(w(Γi)

Pf(w(Γi))

Topological Invariance : from 2D to 3D
L. Fu, C.L.Kane, and E.J. Mele  PRL 98, 106803 (2007)
J.E. Moore and L. Balents, PRB 75, 121306 (2007)
R. Roy, cond-mat/0607531

In 2D : 
              with 

In 3D : 8 distincts TRIM Γ1...8 = (n1G1 + n2G2 + n3G3 )/2        nj = 0,1

3 G dependant top. invariant :

1 top. invariant :  

                                                                                

➠ Possible existence of 3D topological insulators

Γ1

Γ2

Γ3

Γ4

kx

ky

kz

Γ5

Γ6

Γ7

Γ8
(−1)ν

i =
�

Γj/ni=1

�
det(w(Γj)

Pf(w(Γj))

(−1)∆ =
i=4�

i=1

�
det(w(Γi)

Pf(w(Γi))
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Topological Invariance from the edges

In 1D : 
2 T-reversal symmetric momenta  Γa =0, Γb =π/a

invariants : Δ whether edge Fermi line cuts (odd 
times) the line Γa →Γb

«strong» topological insulator, 
ν0 =1, not layered

«weak» topological insulator, 
ν0 =0 (layered 2D TI)

In 2D : 
invariants : ν1..3 whether edge Fermi surface cuts (odd 
times) the line Γ1 →Γb

NEW invariant : ν0 whether Fermi surface encloses an 
odd number of Γa
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Topological Invariance from the edges

In 1D : 
2 T-reversal symmetric momenta  Γa =0, Γb =π/a

invariants : Δ whether edge Fermi line cuts (odd 
times) the line Γa →Γb

In 2D : 
invariants : ν1..3 whether edge Fermi surface cuts (odd 
times) the line Γ1 →Γb

NEW invariant : ν0 whether Fermi surface encloses an 
odd number of Γa
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Topological insulators in 3D
1. This fourth invariant gives a robust 3D “strong topological insulator” whose metallic 
surface state in the simplest case is a single “Dirac fermion” (Fu-Kane-Mele, 2007)

2. Some fairly common 3D materials might be topological insulators! (Fu-Kane, 2007)

Claim:
Certain insulators will always have metallic surfaces with strongly spin-dependent structure

How can we look at the metallic surface state of a 3D material to test this prediction?

kx

ky

E

EF

kx

ky

(a) (b)

3D Topological Insulators

3D Topological 
Insulator

Surface States : 
Dirac Fermions

no violation of Fermion doubling theorem : 2nd cone is on the other side !

Hsurface = −i�vF σ.∇
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With inversion symmetry :                                    over 2N occupied bands 

                                                         
                   :            Parity eigenvalue of filled band 2m 

Topological Invariant : 

Topological Invariance and Band Inversion

δi =
N�

m=1

ξ2m(Γi)

ξ2m(Γi) = ±1

(−1)ν0 =
i=8�

i=1

δi

Most Insulator are trivial (not topological) 

General strategy in seeking topological insulators: 

‣ find a compound with a band inversion with respect to known insulator, induced by 
strong spin orbit

‣ if inversion of bands with opposite parity eigenvalue : ν0 will switch to non trivial 
value

➡ Candidate for Topological Insulators

11

(a) (b) (c)

EF

E
kxkx

kyky
!4!3

!1 !2

!4!3

!1 !2

FIG. 7 Fermi circles in the surface Brillouin zone for (a) a
weak topological insulator and (b) a strong topological insu-
lator. In the simplest strong topological insulator the Fermi
circle encloses a single Dirac point (c).

ferred to as a weak topological insulator, and has ν0 = 0.

The indices (ν1ν2ν3) can be interpreted as Miller indices

that describe the orientation of the layers. Unlike the 2D

helical edge states of a single layer, time reversal sym-

metry does not protect these surface states. Though the

surface states must be present for a clean surface, they

are not robust in the presence of disorder, and they will

be unstable to Anderson localization. Interestingly, how-

ever, a line dislocation in a weak topological insulator is

associated with protected 1D helical edge states (Ran,

Zhang and Vishwanath, 2009).

ν0 = 1 identifies a distinct phase, called a strong topo-

logical insulator, which can not be interpreted as a de-

scendent of the 2D quantum spin Hall insulator. ν0 de-

termines whether an even or an odd number of Kramers

points is enclosed by the surface Fermi circle. In a strong

topological insulator the surface Fermi circle encloses an

odd number of Kramers degenerate Dirac points. The

simplest case, with a single Dirac point(Fig. 7(b,c)), can

be described by the Hamiltonian,

Hsurface = −i�vF�σ · �∇, (16)

where �σ characterizes the spin. (For a surface with a

mirror plane, symmetry requires �S ∝ ẑ × �σ.)
The surface electronic structure of a topological insula-

tor is similar to graphene, except rather than having four

Dirac points (2 valley × 2 spin) there is just a single Dirac

point. This appears to violate the fermion doubling the-

orem (Nielssen and Ninomiya, 1983) discussed in section

II.B.2. The resolution is that the partner Dirac points

reside on opposite surfaces. The situation is similar to

the 2D quantum Hall effect, where the chiral edge states,
which violate a 1D doubling theorem, have a partner on

the opposite edge.

The surface states of a strong topological insulator

form a unique 2D topological metal (Fu and Kane, 2007;

Fu, Kane and Mele, 2007) that is essentially half an or-

dinary metal. Unlike an ordinary metal, which has up

and down spins at every point on the Fermi surface, the

surface states are not spin degenerate. Since time rever-

sal symmetry requires that states at momenta k and −k
have opposite spin, the spin must rotate with k around

the Fermi surface, as indicated in Fig. 7(b). This leads

to a non trivial Berry’s phase acquired by an electron

going around the Fermi circle. Time reversal symmetry

(a) Pure Bismuth (x=0)

 

(b) Bi1-xSbx , .07<x<.22 
 

(c) Pure Antimony (x=1)

T L T L T L

La
La La

Ls
Ls

Ls

E E

k k k

EFEF

FIG. 8 Schematic representation of the band structure of
Bi1−xSbx, which evolves from semimetallic behavior for x <
.07 to semiconducting behavior for .07 < x < .22 and back
to semimetallic behavior for x > .18. The conduction and
valence bands Ls,a invert at x ∼ .04.

Bi: Class (0; 000) Sb: Class (1; 111)

Λa Symmetry label δa Λa Symmetry label δa

1Γ Γ+
6 Γ−

6 Γ+
6 Γ+

6 Γ+
45 −1 1Γ Γ+

6 Γ−
6 Γ+

6 Γ+
6 Γ+

45 −1

3L Ls La Ls La La −1 3L Ls La Ls La Ls +1

3X Xa Xs Xs Xa Xa −1 3X Xa Xs Xs Xa Xa −1

1T T−
6 T+

6 T−
6 T+

6 T−
45 −1 1T T−

6 T+
6 T−

6 T+
6 T−

45 −1

TABLE II Symmetry labels for the Bloch states at the 8 time
reversal invariant momenta Λa for the 5 valence bands of Bi
and Sb. δa are given by (12) and determine the topological
class (ν0; ν1ν2ν3) by relations similar to (10). The difference
between Bi and Sb is due to the inversion of the Ls and La

bands that occurs at x ∼ .04.

requires that this phase be 0 or π. When an electron

circles a Dirac point, its spin rotates by 2π, which leads

to a π Berry’s phase.

The Berry’s phase has important consequences for the

behavior in a magnetic field (to be discussed in section

V.A) and for the effects of disorder. In particular, in an

ordinary 2D electron gas the electrical conductivity de-

creases with decreasing temperature, reflecting the ten-

dency towards Anderson localization in the presence of

disorder (Lee and Ramakrishnan, 1985). The π Berry’s

phase changes the sign of the weak localization correc-

tion to the conductivity leading to weak antilocalization
(Suzuura and Ando, 2002). In fact, the electrons at the

surface of a strong topological insulator can not be local-

ized even for strong disorder, as long as the bulk energy

gap remains intact (Nomura, Koshino and Ryu, 2007).

In this regard, the situation is similar to the edge states

of the quantum spin Hall insulator discussed in section

III.A, however, the electron motion on the surface is dif-

fusive rather than ballistic.

B. Bi1−x Sbx

The first 3D topological insulator to be discovered

experimentally was the semiconducting alloy Bi1−xSbx,

whose unusual surface bands were mapped in an

angle-resolved photoemission (ARPES) experiment by a

Princeton University group led by Hasan.
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HgTe / CdTe Heterojunctions

• Band Structure of HgTe : band 
inversion (strong spin-orbit)

• CdTe : no band inversion

HgTe-Quantum Wells

MBE-Growth
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5 5

Bandgap vs. lattice constant
(at room temperature in zinc blende structure)
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HgTe

band structure

semi-metal or semiconductorsemi metal or semiconductor
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In HgTe the usual ordering of conduction and 

valence band is inverted by spin-orbit coupling.

HgTe Quantum Wells
Bernevig et al.,  Science 314, 1757 (2006).

HgTe
H. Buhmann
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band structure
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HgTe / CdTe Heterojunctions

H. Buhmann

Simplified Picture

normal

m > 0 m < 0

insulator QSHE

bulkbulk

bulk

insulating

entire sample

insulating

d>dcd<dc

Γ6

Γ8

Γ6

Γ8

no band inversion in the junction band inversion in the junction

H. Buhmann

Simplified Picture

normal

m > 0 m < 0

insulator QSHE

bulkbulk

bulk

insulating

entire sample

insulating

d≈dc

effective description : 
Dirac model per spin 
with m<0 or m>0
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How to probe ? Conductance Measurements

H. Buhmann

Experiment

! !

k k

H. Buhmann

Experiment

! !

k k

Bulk band

Bulk band

Bulk band

Bulk band

Surface States

d < dc : standard insulator d > dc : toplogical insulator

König et al., Science 318 (2007)

2 Terminal Conductance

I I

All the modes of 
a standard wire
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Beyond 2 terminals : Buttiker-Landauer descriprion

• Consider a Hall bar

• Series of algebraic Conductance G12,34, ...

e2/h ν

νe2/h

lB

Roth et al., Science 325 (2009)
P. Adroguer, D. Carpentier, unpublished
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Conductance Measurements
Roth et al., Science 325, 294 (2009)

mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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Fig. 1. Two-terminal (R14,14) (top two traces) and four-terminal (R14,23) (bottom traces) resistance versus
(normalized) gate voltage for the Hall bar devices D1 and D2 with dimensions (length× width) as indicated.
The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
leads.

Fig. 3. Four- and two-terminal
resistance measured on device
D3: (A) R14,23 (red line) and R14,14
(green line) and (B) R13,54 (red
line) and R13,13 (green line). The
dotted blue lines indicate the ex-
pected resistance value from a
Landauer-Büttiker calculation.
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T=10mK

25mercredi 19 janvier 2011



Conductance Measurements
Roth et al., Science 325, 294 (2009)

mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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Fig. 1. Two-terminal (R14,14) (top two traces) and four-terminal (R14,23) (bottom traces) resistance versus
(normalized) gate voltage for the Hall bar devices D1 and D2 with dimensions (length× width) as indicated.
The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
leads.

Fig. 3. Four- and two-terminal
resistance measured on device
D3: (A) R14,23 (red line) and R14,14
(green line) and (B) R13,54 (red
line) and R13,13 (green line). The
dotted blue lines indicate the ex-
pected resistance value from a
Landauer-Büttiker calculation.
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V* : gate voltage

T=10mK

mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
leads.

Fig. 3. Four- and two-terminal
resistance measured on device
D3: (A) R14,23 (red line) and R14,14
(green line) and (B) R13,54 (red
line) and R13,13 (green line). The
dotted blue lines indicate the ex-
pected resistance value from a
Landauer-Büttiker calculation.
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mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
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Fig. 3. Four- and two-terminal
resistance measured on device
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tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
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tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.
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results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
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with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
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samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
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3D Topological Insulators

• First proposed candidate : Bi1-xSbx

again band inversion

• Second generation 3D Topological  Insulators : Bi2Se3, Bi2Te3, Sb2Te3, ...

• Reference material : Bi2Se3

‣  single Dirac cone at the surface
‣  stoichiometric
‣  large band gap : 0.3 eV (3600K)

How to probe experimentally ? 
‣ existence of surface states : (spin resolved) ARPES 
‣ transport ... problematic 

11
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FIG. 7 Fermi circles in the surface Brillouin zone for (a) a
weak topological insulator and (b) a strong topological insu-
lator. In the simplest strong topological insulator the Fermi
circle encloses a single Dirac point (c).

ferred to as a weak topological insulator, and has ν0 = 0.

The indices (ν1ν2ν3) can be interpreted as Miller indices

that describe the orientation of the layers. Unlike the 2D

helical edge states of a single layer, time reversal sym-

metry does not protect these surface states. Though the

surface states must be present for a clean surface, they

are not robust in the presence of disorder, and they will

be unstable to Anderson localization. Interestingly, how-

ever, a line dislocation in a weak topological insulator is

associated with protected 1D helical edge states (Ran,

Zhang and Vishwanath, 2009).

ν0 = 1 identifies a distinct phase, called a strong topo-

logical insulator, which can not be interpreted as a de-

scendent of the 2D quantum spin Hall insulator. ν0 de-

termines whether an even or an odd number of Kramers

points is enclosed by the surface Fermi circle. In a strong

topological insulator the surface Fermi circle encloses an

odd number of Kramers degenerate Dirac points. The

simplest case, with a single Dirac point(Fig. 7(b,c)), can

be described by the Hamiltonian,

Hsurface = −i�vF�σ · �∇, (16)

where �σ characterizes the spin. (For a surface with a

mirror plane, symmetry requires �S ∝ ẑ × �σ.)
The surface electronic structure of a topological insula-

tor is similar to graphene, except rather than having four

Dirac points (2 valley × 2 spin) there is just a single Dirac

point. This appears to violate the fermion doubling the-

orem (Nielssen and Ninomiya, 1983) discussed in section

II.B.2. The resolution is that the partner Dirac points

reside on opposite surfaces. The situation is similar to

the 2D quantum Hall effect, where the chiral edge states,
which violate a 1D doubling theorem, have a partner on

the opposite edge.

The surface states of a strong topological insulator

form a unique 2D topological metal (Fu and Kane, 2007;

Fu, Kane and Mele, 2007) that is essentially half an or-

dinary metal. Unlike an ordinary metal, which has up

and down spins at every point on the Fermi surface, the

surface states are not spin degenerate. Since time rever-

sal symmetry requires that states at momenta k and −k
have opposite spin, the spin must rotate with k around

the Fermi surface, as indicated in Fig. 7(b). This leads

to a non trivial Berry’s phase acquired by an electron

going around the Fermi circle. Time reversal symmetry

(a) Pure Bismuth (x=0)

 

(b) Bi1-xSbx , .07<x<.22 
 

(c) Pure Antimony (x=1)

T L T L T L

La
La La
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E E

k k k

EFEF

FIG. 8 Schematic representation of the band structure of
Bi1−xSbx, which evolves from semimetallic behavior for x <
.07 to semiconducting behavior for .07 < x < .22 and back
to semimetallic behavior for x > .18. The conduction and
valence bands Ls,a invert at x ∼ .04.

Bi: Class (0; 000) Sb: Class (1; 111)
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1Γ Γ+
6 Γ−

6 Γ+
6 Γ+

6 Γ+
45 −1 1Γ Γ+

6 Γ−
6 Γ+

6 Γ+
6 Γ+

45 −1

3L Ls La Ls La La −1 3L Ls La Ls La Ls +1

3X Xa Xs Xs Xa Xa −1 3X Xa Xs Xs Xa Xa −1

1T T−
6 T+

6 T−
6 T+

6 T−
45 −1 1T T−

6 T+
6 T−

6 T+
6 T−

45 −1

TABLE II Symmetry labels for the Bloch states at the 8 time
reversal invariant momenta Λa for the 5 valence bands of Bi
and Sb. δa are given by (12) and determine the topological
class (ν0; ν1ν2ν3) by relations similar to (10). The difference
between Bi and Sb is due to the inversion of the Ls and La

bands that occurs at x ∼ .04.

requires that this phase be 0 or π. When an electron

circles a Dirac point, its spin rotates by 2π, which leads

to a π Berry’s phase.

The Berry’s phase has important consequences for the

behavior in a magnetic field (to be discussed in section

V.A) and for the effects of disorder. In particular, in an

ordinary 2D electron gas the electrical conductivity de-

creases with decreasing temperature, reflecting the ten-

dency towards Anderson localization in the presence of

disorder (Lee and Ramakrishnan, 1985). The π Berry’s

phase changes the sign of the weak localization correc-

tion to the conductivity leading to weak antilocalization
(Suzuura and Ando, 2002). In fact, the electrons at the

surface of a strong topological insulator can not be local-

ized even for strong disorder, as long as the bulk energy

gap remains intact (Nomura, Koshino and Ryu, 2007).

In this regard, the situation is similar to the edge states

of the quantum spin Hall insulator discussed in section

III.A, however, the electron motion on the surface is dif-

fusive rather than ballistic.

B. Bi1−x Sbx

The first 3D topological insulator to be discovered

experimentally was the semiconducting alloy Bi1−xSbx,

whose unusual surface bands were mapped in an

angle-resolved photoemission (ARPES) experiment by a

Princeton University group led by Hasan.

Fu and Kane PRB 76 (2007)

Hasan’s group (many papers)

Checkelsky et al., PRL. 103, 246601 (2009) 

Zhang H. et al., Nat. Phys. 5, 438 (2009) 
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3D Topological Insulators : ARPES 

Measure Energy, momentum, and spin of surface electrons

‣ observation of Dirac cone in the bulk gap

ARPES of topological insulators
Imagine carrying out a “photoelectric effect” experiment very carefully.

Measure as many properties as possible of the outgoing electron
to deduce the momentum, energy, and spin it had while still in the solid.

This is “angle-resolved photoemission spectroscopy”, or ARPES.

Xia et al. Nat. Physics 5, 398 (2009)

ARPES of topological insulators
First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.

This is later data on Bi2Se3 from the same group in 2009:

The states shown are in the “energy gap” of the bulk material--in general no 
states would be expected, and especially not the Dirac-conical shape.

Topological Order at Room Temperature
(QH-like topological effect at 300k, no magnetic field)

Half Fermi gasDirac nodal Topo Insulator

Topological Fermions

Hasan 09

‣ Stable up to room 
temperature
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3D Topological Insulators : ARPES 

Momentum - Spin locking : helical Dirac fermions

ARPES of topological insulators
Imagine carrying out a “photoelectric effect” experiment very carefully.

Measure as many properties as possible of the outgoing electron
to deduce the momentum, energy, and spin it had while still in the solid.

This is “angle-resolved photoemission spectroscopy”, or ARPES.

Hsieh et al., Nature 460, 1101 (2009)

‣ Ca bulk doping
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3D Topological Insulators : ARPES 

Surface doping by NO2 adsorption (hole doping)

ARPES of topological insulators
Imagine carrying out a “photoelectric effect” experiment very carefully.

Measure as many properties as possible of the outgoing electron
to deduce the momentum, energy, and spin it had while still in the solid.

This is “angle-resolved photoemission spectroscopy”, or ARPES.

Hsieh et al., Nature 460, 1101 (2009)
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3D Topological Insulators : ARPES 

Magnetic impurities open a gap for the surface states

ARPES of topological insulators
Imagine carrying out a “photoelectric effect” experiment very carefully.

Measure as many properties as possible of the outgoing electron
to deduce the momentum, energy, and spin it had while still in the solid.

This is “angle-resolved photoemission spectroscopy”, or ARPES.

Xia et al. Nat. Physics 5, 398 (2009)
Hsieh et al., Nature 460, 1101 (2009)
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FIG. 15 Protection by time-reversal symmetry: Topologi-
cal surface states are robust in the presence of strong non-
magnetic disorder but open a gap in the presence of time-
reversal breaking magnetic impurities and disorder. (a) Mag-
netic impurity such as Fe on the surface of Bi2Se3 opens a gap
at the Dirac point. The magnitude of the gap is set by the in-
teraction of Fe ions with the Se surface and the time-reversal
breaking disorder potential introduced on the surface. (b)
A comparison of surface band dispersion with and without
Fe doping. (c) Non-magnetic disorder created via molecular
absorbent NO2 or alkali atom adsorption (K or Na) on the
surface leaves the Dirac node intact in both Bi2Se3 and Bi2Te3
(Hsieh, et al., 2009b; Xia, et al., 2009b; Wray, et al., 2010).
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FIG. 16 Chemical gating a topological surface to the spin-
degenerate point: Topological insulator surfaces are most in-
teresting if the chemical potential can be placed at the Dirac
node without intercepting any bulk band. This condition can
be achieved in Bi2Se3 via the chemical tailoring of the surface
or using electrical gating methods. (a) Evolution of surface
Fermi surface as a function of increasing NO2 adsorption on
the surface. NO2 extracts electrons from the Bi2Se3 surface
leading to an effective hole doping of the material. (b) Chem-
ical gating of the surface can be used to place the chemical
potential at the spin degenerate Dirac point (Hsieh, et al.,
2009b).

Superconductivity in CuxBi2Se3

(a)
(b)

FIG. 17 Electrical transport in Bi2Se3. (a) Resistivity for
samples of pure Bi2Se3 doped with a small concentration of
Ca. Increasing the Ca concentration moves the Fermi level
from the conduction band into the gap and then to the valence
band. Samples with .002 < x < .0025, labeled G, show insu-
lating behavior below 100◦K (Checkelsky, et al., 2009). (b)
Bi2Se3 doped with Cu shows superconducting behavior below
3.8◦K for x = .12. The inset shows the magnetic susceptibil-
ity which exhibits the Meissner effect (Hor et al., 2010a).

of Ca, which compensates the Se vacancies, to place the
Fermi level within the bulk band gap. The surface was
hole doped by exposing the surface to NO2 gas to place
the Fermi level at the Dirac point.
The main remaining complication with these materi-

als, especially for experimental techniques that (unlike
ARPES) do not distinguish directly between bulk and
surface states, is that they have some residual conduction
in the bulk from impurity or self doping states. Electri-
cal transport measurements on Bi2Se3 show that doping
with a small concentration of Ca leads to insulating be-
havior. Fig. 17(a) shows the resistivity of several samples
with varying Ca concentrations. For .002 < x < .025, the
resistivity shows a sharp upturn below 100◦K before sat-
urating. The low temperature resistivity is still too small
to be explained by the surface states alone. However, the
low temperature transport exhibits interesting 2D meso-
scopic effects that are not completely understood (Check-
elsky, et al., 2009). Doping Bi2Se3 with copper leads to a
metallic state that shows superconducting behavior (Fig.
17(b)) below 3.8◦K (Wray, et al., 2009; Hor et al., 2010a).
This has important ramifications for some of the devices
proposed in the following section.

V. EXOTIC BROKEN SYMMETRY SURFACE PHASES

Now that the basic properties of topological insulators
have been established, we may ask what can be done with
them. In this section we will argue that the unique prop-
erties of topological insulator surface and edge states are
most dramatic if an energy gap can be induced in them.
This can be done by breaking time reversal symmetry
with an external magnetic field (Fu and Kane, 2007) or
proximity to a magnetic material (Qi, Hughes and Zhang,
2008), by breaking gauge symmetry due to proximity to a
superconductor (Fu and Kane, 2008), or by an excitonic
instability of two coupled surfaces (Seradjeh, Moore and
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be achieved in Bi2Se3 via the chemical tailoring of the surface
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the surface. NO2 extracts electrons from the Bi2Se3 surface
leading to an effective hole doping of the material. (b) Chem-
ical gating of the surface can be used to place the chemical
potential at the spin degenerate Dirac point (Hsieh, et al.,
2009b).
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FIG. 17 Electrical transport in Bi2Se3. (a) Resistivity for
samples of pure Bi2Se3 doped with a small concentration of
Ca. Increasing the Ca concentration moves the Fermi level
from the conduction band into the gap and then to the valence
band. Samples with .002 < x < .0025, labeled G, show insu-
lating behavior below 100◦K (Checkelsky, et al., 2009). (b)
Bi2Se3 doped with Cu shows superconducting behavior below
3.8◦K for x = .12. The inset shows the magnetic susceptibil-
ity which exhibits the Meissner effect (Hor et al., 2010a).

of Ca, which compensates the Se vacancies, to place the
Fermi level within the bulk band gap. The surface was
hole doped by exposing the surface to NO2 gas to place
the Fermi level at the Dirac point.
The main remaining complication with these materi-

als, especially for experimental techniques that (unlike
ARPES) do not distinguish directly between bulk and
surface states, is that they have some residual conduction
in the bulk from impurity or self doping states. Electri-
cal transport measurements on Bi2Se3 show that doping
with a small concentration of Ca leads to insulating be-
havior. Fig. 17(a) shows the resistivity of several samples
with varying Ca concentrations. For .002 < x < .025, the
resistivity shows a sharp upturn below 100◦K before sat-
urating. The low temperature resistivity is still too small
to be explained by the surface states alone. However, the
low temperature transport exhibits interesting 2D meso-
scopic effects that are not completely understood (Check-
elsky, et al., 2009). Doping Bi2Se3 with copper leads to a
metallic state that shows superconducting behavior (Fig.
17(b)) below 3.8◦K (Wray, et al., 2009; Hor et al., 2010a).
This has important ramifications for some of the devices
proposed in the following section.

V. EXOTIC BROKEN SYMMETRY SURFACE PHASES

Now that the basic properties of topological insulators
have been established, we may ask what can be done with
them. In this section we will argue that the unique prop-
erties of topological insulator surface and edge states are
most dramatic if an energy gap can be induced in them.
This can be done by breaking time reversal symmetry
with an external magnetic field (Fu and Kane, 2007) or
proximity to a magnetic material (Qi, Hughes and Zhang,
2008), by breaking gauge symmetry due to proximity to a
superconductor (Fu and Kane, 2008), or by an excitonic
instability of two coupled surfaces (Seradjeh, Moore and
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Transport measurement on Bi2Se3

Undoped versus doped samples

Checkelsky et al. PRL, 103 (2010)

Bi2Se3 : good candidate

‣Large band gap : 300 meV

‣Single Dirac surface state

... but metal ! ... μb in the conduction band

‣chemical doping by Ca : CaxBi2-xSe3 

‣Residual transport by bulk states ? 

bulk sample (2x2x0.05 mm)

Various Ca doping
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New materials : ternary compounds

Half Heusler semiconducting compounds : 
(X2YZ or XYZ composition with X, Y the transition or rare-earth metals and Z the main-group element )

‣band inversion found in ab initio studies for lots of them

‣topological insulators coexisting with other order 

•  LnPtBi	 (Ln=Nd, Sm, Gd, Tb, Dy) : TI + magnetism

•  YbPtBi : heavy fermion TI : topological Kondo insulator (???)

•  LaPtBi : TI + superconductivity  (?)

‣Problem : not insulators ... 

Bi2Te2Se  : 

‣Topological insulator with large bulk resistivity
 (6 Ωcm at 4 K)

‣Signature (SdH oscillations) of metallic edge 

transport with high mobility (μs ∼ 2,800 cm2/Vs)

Lin et al., Nature Materials 9, 546 (2010) 

Chadov et al., Nature Materials 9, 541 (2010) 

Z. Ren et al., arxiv:1011.2846 

J. Xiong et al., arxiv:1101.1315 
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Quantum Oscillations in a Topological Insulator Bi2Te2Se
with Large Bulk Resistivity (6 Ωcm)

Jun Xiong1, A. C. Petersen1,2, Dongxia Qu1, R. J. Cava2 and N. P. Ong1
1Department of Physics and 2Department of Chemistry, Princeton University, New Jersey 08544, U.S.A.

(Dated: January 10, 2011)

We report the observation of prominent Shubnikov-de Haas oscillations in a Topological Insulator,
Bi2Te2Se, with large bulk resistivity (6 Ωcm at 4 K). By fitting the SdH oscillations, we infer a large
metallicity parameter kF ! = 41, with a surface mobility (µs ∼ 2,800 cm2/Vs) much larger than the
bulk mobility (µb ∼ 50 cm2/Vs). The plot of the index fields Bν vs. filling factor ν shows a 1

2
-shift,

consistent with massless, Dirac states. Evidence for fractional-filling states is seen in an 11-T field.

Topological Insulators are predicted to bear current-
carrying, massless, Dirac surface states that traverse
the bulk energy gap [1–4]. These unusual surface
states have been observed by angle-resolved photoemis-
sion spectroscopy (ARPES) [5–8] and scanning tunnel-
ing microscopy experiments (STM) [9]. Quantization
of the Dirac states into Landau Levels has been demon-
strated in STM experiments [10, 11]. Observation of the
surface currents by transport has been more challeng-
ing [12, 13]. Recently, however, encouraging progress has
been achieved. The surface SdH oscillations and surface
mobility was measured in Bi2Te3 crystals [14]. The ex-
istence of surface states at fractional filling in a pulsed
magnetic field were reported in (Bi,Sb)Se3 [15]. Here
we report the observation of prominent SdH oscillations
in crystals of Bi2Te2Se with very large bulk resisitivity.
Evidence for fractional-filling states become apparent at
relatively low magnetic fields.

Recently, ARPES experiments have shown that
Bi2Te2Se displays a single topological surface state [16].
Independent of our experiment, SdH oscillations in
this compound have also been reported by Y. Ando’s
group [17]. We were motivated to grow crystals of
Bi2Te2Se by reasoning that Bi2Se3 crystals grow with
a stable density of Se vacancies. Electrons donated by
the vacancies pin the Fermi energy EF to the conduction
band, resulting in a negative thermopower S at low tem-
perature T . By contrast, as-grown Bi2Te3 typically has
a positive thermopower. By growing a series of the hy-
brid semiconductor Bi2Se1+xTe2−x, we have found that
the low-temperature thermopower varies systematically,
reflecting changes in EF . Crystals were grown by a modi-
fied Bridgeman method from high purity elemental start-
ing materials. After heating for one day at 850 C in a
clean evacuated quartz tube, the melt was cooled in a
temperature gradient to 500 C where it was left to an-
neal for 2 days before cooling rapidly to room tempera-
ture. For the composition Bi2Te2Se, S rises to very large
values. With a razor blade, we cleaved thin crystals and
attached contacts using silver paint. For the sample here,
the crystal thickness d = 110 µm, while the distance be-
tween voltage leads equals 0.5 mm. The resistivity profile
measured at B = 0 is shown in Fig. 1a. Below 40 K, the
value of ρ attains values in the range 5-6 Ωcm, or ∼1000
times higher than in non-metallic Bi2Te3. Expressed as

FIG. 1: (Color online) The resistivity of a cleaved crystal of
the Topological Insulator Bi2Te2Se. Panel (a) shows ρ vs. T
measured in B = 0. Below 10 K, ρ attains the value 5.5 Ωcm,
or an areal resistance R! = 400 Ω. Despite the non-metallic
value of R!, sizeable quantum oscillations are observed be-
low 38 K. Panel (b) displays the prominent SdH oscillations
observed in the derivative dρxy/dB vs. B at 4.4 K.

an areal resistance R! = ρ/d, the low-T resistance cor-
responds to R! = 400 Ω. Despite the high resistance, ρ
is only weakly T -dependent, displaying a logT increase
as T → 0. The observed Hall coefficient RH below 10 K
(n-type) implies a very small bulk carrier concentration
nb ∼ 2.6× 1016 cm−3. Combining this with the observed

33mercredi 19 janvier 2011



The forgotten subjects ... 

Thank You for your attention !

‣ Topological Superconductivity /Superfluidity
Wray et al.,  (2008)
Hor et al., PRL 104, 057001 (2010)

‣ Classifications of topological insulators / superconductors : the 
10-fold way, via study of disorder effect (Non Linear Sigma)

Schynder et al., PRB 78 (2008)
Kitaev, AIP Conf. Proc. 1134, 22 (2009)

‣ Anomalous axion electrodynamics 
Qi, Hughes and Zhang, PRB 78 (2008)
Essin, Moore and Vanderbilt, PRL 102, 146805 (2009)

Superconductor

CdTe

HgTe

I

IR

L

‣ Probing helical edges states by Cooper pairs injection 
P. Adroguer et al., PRB82, 081303 (2010)

‣ the quest for Majorana fermions at Topological Insulator / 
Superconductor interface         

Fu and Kane, PRL 100, 096409 (2008)
Akhmerov et al., PRL 102, 216404 (2009)            
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