

Arduino

Yarelis D. Acevedo Arianna H. Colón Tiahra N. Avilés

AGENDA

What is Arduino?

What is an Arduino? Why Arduino? How can I use it and implement it on the lab?

Arduino Software

How Arduinos are programmed

How to get started?

Hands On

Using Tinkercad simulator

What is a microcontroller

To answer this enter to menti.com Code: 5829 2707

What is a microcontroller?

A microcontroller (MCU for microcontroller unit) is a small computer on a single metal-oxide-semiconductor (MOS) integrated circuit (IC) chip. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable input/output peripherals.

Big computers vs small computers

Dell Precision T1500

CPU Speed: 2.93GHz

- Quad-core!

RAM: 16GB

Storage: 2TB

I/O:

 USB, Firewire, Serial, PS/2, RJ-45, Audio, etc.

Atmel ATMEGA328P

CPU Speed: 20MHz

Not Quad-core ©

RAM: 2KB

Storage:

32KB Program Memory

1KB EEPROM

I/O:

Up to 23 generic I/O

6 of them 'analog-capable'

UART/SPI/I²C, etc.

Arduino Microcontroller

- Open-source electronics platform based on easy-to-use hardware and software.
- Are able to read inputs light on a sensor, a finger on a button, or a Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing something online.

What can I do?

Sensors

- Push buttons, touchpads, tilt switches
- Variable resistors (Sliders, Volume knobs)
- Photoresistors (sensing light)
- Thermistors (temperature)
- Ultrasound (proximity range finder)

Actuators

- Lights, LED's
- Motors
- Speakers
- Displays (LCD's)

Types of Arduinos

Types of Arduino

Arduino Board	Processor	Memory	Digital I/O	Analogue I/O
Arduino Uno	16Mhz ATmega328	2KB SRAM, 32KB flash	14	6 input, 0 output
Arduino Due	84MHz AT91SAM3X8E	96KB SRAM, 512KB flash	54	12 input, 2 output
Arduino Mega	16MHz ATmega2560	8KB SRAM, 256KB flash	54	16 input, 0 output
Arduino Leonardo	16MHz ATmega32u4	2.5KB SRAM, 32KB flash	20	12 input, 0 output

Arduino Uno

Analog and digital pins

The Arduino can input and output analog signals as well as digital signals.

An analog signal is one that can take on any number of values, unlike a digital signal which has only two values: <u>HIGH and LOW</u>.

We will talk about this later!

How Arduino is programmed?

Using a software called Arduino IDE


```
// the setup function runs once when you press reset or power the board
void setup() {
         alize digital pin LED_BUILTIN as an output.
         LXD_BUILTIN, OUTPUT);
    02
     lop function runs over and over again forever
void loop() {$
  digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
Agriculture Softwar for a second that the voltage LOW
```

How Arduinos are programmed

Arduino Software (IDE)

The Arduino Integrated Development Environment - or Arduino Software (IDE) - contains a text editor for writing code, a message area, a text console, a toolbar with buttons for common functions and a series of menus. It connects to the Arduino hardware to upload programs and communicate with them.

Arduino Language

- Simplified C/C++
- Based on the wiring project
 - http://wiring.org.co
- Peripheral libraries
 - o LCD, sensors, 12C, ect.

Useful functions

pinMode()	set pin as input or output	
digitalWrite()	set a digital pin high/low	
digitalRead()	read a digital pin's state	
analogRead()	read an analog pin	
analogWrite()	write an "analog" PWM value	
delay()	wait an amount of time	
millis()	get the current time	

Sketch

Blinking LED

Blink | Arduino 1.8.15

File Edit Sketch Tools Help

Blink§

```
int ledpin = 13;

void setup() {
    // initialize digital pin LED_BUILTIN as an output.
    pinMode(ledpin, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
    digitalWrite(ledpin, HIGH); // turn the LED on (HIGH is the voltage level)
    delay(5000); // wait for 5 seconds
    digitalWrite(ledpin, LOW); // turn the LED off by making the voltage LOW
    delay(5000); // wait for 5 seconds
}
```

Done compiling.

Sketch uses 936 bytes (2%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2048 bytes.

Global variables

Global variables

int ledPin = 13;

- LED connected to the control pin 13

Setup()

loop()

How to get started?

- Arduino board
 - USB cable
 - DC power supplies
- Download the Arduino's software (Arduino IDE)
 - Read carefully
 - Instruccions to install and setup the Arduino board with the computer and software
 - Download the Arduino IDE software
 - http://www.arduino.cc
- Plug it in!

Plug in it into the computer

Tinkercad is a free, online 3D modeling program that runs in a web browser, known for its simplicity and ease of use. Since it became available in 2011 it has become a popular platform for creating models for 3D printing as well as an entry-level introduction to constructive solid geometry in schools.

AUTODESK® TINKERCAD®

Tinkercad

Make an account in tinkercad

Blog

×

Learn Teach

Tinkercad Lesson Plans

Tinkercad lesson plans are ready to use online or in the classroom. Discover curriculum developed in partnership with teachers. Learn more

Circuits

Private

Create new Circuit

Search designs...

00 00

Your Classes

Projects

+ Create project

Button

Button | Arduino 1.8.15

File Edit Sketch Tools Help

Button §

```
// constants won't change. They're used here to set pin numbers:
const int buttonPin = 2;
                           // the number of the pushbutton pin
const int ledPin = 13;
                           // the number of the LED pin
// variables will change:
int buttonState = 0:
                            // variable for reading the pushbutton status
void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode (buttonPin, INPUT);
void loop() {
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);
 // check if the pushbutton is pressed. If it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
   // turn LED on:
   digitalWrite(ledPin, HIGH);
  } else {
   // turn LED off:
   digitalWrite(ledPin, LOW);
```

Moving a stepper motor

Moving a stepper motor using a potentiometer

Using a load cell

Challenge!!

LED Control Using a button

LED Brightness Control Using a Potentiometer

Challenge!!

Scrolling LED

