Experimental Techniques for Dark Matter Search Experiments

Satyajit Saha, SINP, Kolkata RAPID 2021, October 29, 2021

- Introduction
- Challenges in dark matter search
- Experimental Techniques for Direct DM search
- A few important examples
- Our Initiative: Jaduguda Underground Science Laboratory (JUSL)
- Conclusion and outlook

Satyajit Saha, SINP, Kolkata RAPID 2021, October 29, 2021

Introduction

- Challenges in dark matter search
- Experimental Techniques for Direct DM search
- A few important examples
- Our Initiative: Jaduguda Underground Science Laboratory (JUSL)
- Conclusion and outlook

Satyajit Saha, SINP, Kolkata RAPID 2021, October 29, 2021

What is our Universe made of?

Ask the same to an Astrophysicist today

What are the evidences in favour of existence of Dark Matter?

Large Scale Structure formation

Cosmic microwave background anisotropy

Evidence# 1: Galaxy Rotation

 $\Rightarrow \text{Faster fall-off of velocity in the halo region}$

For the core region of the galaxy: $v^{2} = G \frac{\int_{0}^{R} 4\pi r^{2} dr \rho}{R}$ $v(R) \sim R \text{ (constant core density)}$

Given observed velocity saturation in the disk / halo region: $v(R) \sim constant$ $M(R) \sim R$ in the halo region

What are the constituents of dark matter ? What is it made of ?

Strong Interaction

- **Electromagnetic**
- Unstable by decay

AXION Sterile Neutrinos Neutralinos in SUSY LKP in Extra Dimension Superheavy DM WIMP

....

Weakly Interacting Massive Particles (WIMP) give the right relic abundance

Do we understand Neutrinos, Dark Matter and Beyond Standard Model scenarios from theoretical standpoint ?

Courtesy Tim Tait, UC Irvine, UCLADM 2018

Introduction

- Challenges in dark matter search
- Experimental Techniques for Direct DM search
- A few important examples
- Our Initiative: Jaduguda Underground Science Laboratory (JUSL)
- Conclusion and outlook

Terrestrial search for evidence of Dark Matter Particle Candidates

Indirect Search

 $q\overline{q}, e^+e^-, \mu^+\mu^- \dots$

 $\chi\chi \rightarrow \gamma\gamma$,

Direct Search

 $\chi N \rightarrow \chi N$ Indirect

DM ? M SM SM

Collider Search

 $pp \rightarrow \chi \chi + more..$

Collider

Principle of Direct Search Experiments

• Direct searches : Observe Nuclear Recoils

 $-\chi + N \rightarrow \chi + N$

• Recoil Energy:

$$E_R = \frac{M_{\chi} v^2}{2} \frac{4M_{\chi} M_A}{(M_{\chi} + M_A)^2} \frac{(1 - \cos\theta)}{2}$$

- Very small recoil energy $E_R \sim 1 100 \ keV$
- Featureless recoil spectrum.
- Soft spectrum for large target masses
- Very low event rate $\vartheta(0.01 \ ton^{-1} keV^{-1} day^{-1})$
- Loose efficiency unless lowering the detector threshold $E_R \sim \vartheta (1 10 \text{ keV})$

Is Direct Search so simple?

Sources of external background

External gamma rays from radioactivity:

- Suppression by self-shielding of Target
- Materials screening and selection
- Rejection of multiple scatters
- Discrimination

External muons from cosmic rays:

- Go underground!
- Active shielding (veto detectors)

External neutrons from muon induced reactions, (α , n) reaction on materials or fission (U, Th)

- Go underground!
- Shield: passive (HDPE, water) or active (water / neutron scintillator veto)
- Judicious materials and site selection (low U / Th)
- Reduce / monitor Radon contamination at the underground site

Passive and Active Shield

Neutrinos from Sun, atmosphere and from supernovae explosion:

- Elastic neutrino-electron scattering
- Coherent neutrino-nucleus scattering

Sources of internal background

Internal contamination in liquids:

- Krypton: ⁸⁵Kr ($T_{1/2}$ = 10.8 Y) remove by cryogenic distillation / centrifuges
- **Rn:** remove by absorption in activated carbon
- Argon: ³⁹Ar (E_{β} =565 keV, $T_{1/2}$ = 268 Y, cosmogenic production, 759 ± 128 atoms/kg/day, Phys. Rev. C 100, 024608) ⁴²Ar ((E_{β} =599 keV, $T_{1/2}$ = 32.9 Y, cosmogenic, nuclear weapons test)
- Xenon: ¹³⁶Xe $\beta\beta$ decay ($T_{1/2} = 2.2 \times 10^{21}$ Y) very long lifetime

Surface background in solids (from bulk and contaminations):

- Germanium or scintillators grown out of high purity materials / pay attention to the melts \rightarrow lower intrinsic background
- Cosmic activation
- Surface events from α or β decays

Natural / Intrinsic radioactivity background: ⁴⁰K Uranium – Thorium

Intrinsic Radioactivity - U - Th decay chains

Source: U.S. Geological Survey (USGS)

Introduction

- Challenges in dark matter search
- Experimental Techniques for Direct DM search
- A few important examples
- Our Initiative: Jaduguda Underground Science Laboratory (JUSL)
- Conclusion and outlook

Classification of Direct detection experiments based on detection strategies with stress on discrimination

Expected Differential Rates

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_{\chi} \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) \, \mathrm{d}^3 \mathbf{v}$$

Astrophysical parameters:

- ρ_0 = local density of the dark matter in the Milky Way
- $f(\mathbf{v}, t) = WIMP$ velocity distribution

Parameters of interest:

- m_{χ} = WIMP mass (~ 100 GeV/ c^2)
- σ = WIMP-nucleus elastic scattering cross section
 - Spin-independent interactions: coupling to nuclear mass
 - Spin-dependent interactions: coupling to nuclear spin

Recoil Energy Spectra

Expect single collision events only. Nuclear recoil energy spectrum:

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_\chi \cdot m_A} \cdot \int v \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,v) \, \mathrm{d}^3 v,$$

where, $d\sigma/dE$ = differential cross section for WIMP interaction; f(v,t) = velocity distribution of WIMPs in the detector rest frame (time dependent?)

Aim of DM experiment: Determine the energy dependence of DM interaction

$$\frac{dR}{dE}(E) \approx \left(\frac{dR}{dE}\right)_0 F^2(E) \exp\left(-\frac{E}{E_c}\right),$$

where, $(dR/dE)_0$ = event rate at zero momentum transfer; $F^2(E)$ = Form factor of WIMP-nucleon scattering (nuclear physics input) E_c = Energy scale dependent on recoil nuclear mass and WIMP mass

Event rate estimate for DM:

$$\begin{split} R &\sim \sigma_{\chi-N} \times n < v > \propto \sigma_{\chi-N} \times (\frac{\rho}{M_x}) \times \int v f(v) dv \\ \sigma_{\chi-N} &= \sigma_{\chi-N}^{SI} + \sigma_{\chi-N}^{SD} \end{split}$$

Standard Halo Model of Galactic Dark Matter

Isotropic, isothermal sphere with Maxwellian velocity distribution:

$$f(v) = N.\exp\left(-\frac{3|v|^2}{2\sigma^2}\right)$$

Distribution truncates at $|v| > v_{esc}$ Local density $\rho_0 \approx 0.3 \frac{GeV}{cm^3} = 5 \times 10^{-23} \ g/cm^3$ Determined from mass modelling of our milky way.

About one WIMP per coffee cup Assuming ~ 100 GeV WIMP mass

Average velocity ~ 220 km/sec. Escape velocity $v_{esc} = 544$ km/sec. (From the highest velocity stars)

Presentation of Experimental Results: Sensitivity Plots

→ Statistical significance of signal over expected background?

J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

Cross section

• Positive signal

• Region in σ_{χ} versus m_{χ}

• Zero signal

- Exclusion of a parameter region
- o Low WIMP masses: detector threshold matters
- o Minimum of the curve: depends on target nuclei
- High WIMP masses: exposure matters $\epsilon = m \times t$

Direct Detection: Experimental Scenario

Positive Indication:

Experiments	Target	Threshold	Total Exposure	Recoil Identification
DAMA/LIBRA	Nal	2.0 keV _{ee}	427,000 kg- days	(NR+EM)
CoGeNT	Ge	0.5 keV _{ee}	140 kg-days	(NR+EM)
CRESST	CaWO ₄	10.0 keV	>700 kg-days	NR

Null Result or Exclusion Limit:

Experiments	Target	Theshold	Total Exposure	Recoil Identification
CDMS-II	Ge/Si	10.0 keV	612 kg-days	NR
CDMS-II (LE)	Ge	2.0 keV _{NR}	241 kg-days	(NR+ER)
EDELWEISS	Ge	20.0 keV	384 kg-days	NR
XENON1T	Xe	8.4 keV _{NR} / < 1 keV _{ER}	2.2 x 10 ⁵ kg-days	NR + ER
LUX	Xe	1.1 keV _{NR}	3.35 x 104 kg-days	NR+ER
PANDA X II	Xe	1.1 keV _{NR}	3.3 x 10 ⁴ kg-days	NR + ER
PICO-2L	F	10 keV	211 kg-days	NR
PICO-60	F	2.45 keV	1404 kg-days	NR
KIMS	CsI (TI)	3 keV	37000 kg-days	NR + ER
CRESST-II	CaWO ₄	0.3 keV	29 kg-days (300 g)	NR + ER
CRESST-III	CaWO ₄	0.03 keV	2.39 kg-days (24 g)	NR + ER

- Introduction
- Challenges in dark matter search
- Experimental Techniques for Direct DM search
- A few important examples
- Our Initiative: Jaduguda Underground Science Laboratory (JUSL)
- Conclusion and outlook

XENON DUAL PHASE TIME PROJECTION CHAMBER based DM Search Experiment XENONnT (LNGS, Italy) LZ (SURF, USA) PANDA-XII (China)

- * Sensitivity to WIMP mass ~ 50 GeV ($\sigma < 10^{-47} \text{ cm}^2 2 \text{ Ton-Yr}$)
- Spin independent & dependent
- Pure noble liquid, low background activity (86Kr [10.8 Y], 136Xe [10²¹ Y])

Removal by fractional distillation

- Radiopure and ultrapure liquid
- Xe_2^* excimer: $\lambda \sim 178$ nm
- Sensitive to both nuclear and electron recoil
- Huge mass (XENON1T: 3 Ton, 2 Ton fiducial)

XENON based DM Search Experiment

Ref: XENON Collaboration, Eur. Phys. J. C (2017) 77:881

XENON based DM Search Experiment

- Look for exotic physics beyond standard model
- Observed excess electron recoil events
- Major Detector for Supernova explosion (SNe) events

For SNe detection by Xenon TPC: Talk by Sayan Ghosh

Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) Experiment <u>@LNGS</u>, Italy (3.6 kmwe depth)

Push threshold to < 0.1 keV

Low mass WIMP sensitivity

Phase I: Saphire crystal (262 g)

Phase II: CaWO4 (300 g)

Phase III: CaWO4 (24 g)

 \geq

Dilution Fridge (~ 15 mK)

Courtesy: CRESST, arXiv:0809.1829v2 (2009)

CRESST III Experiment

Neutron - β / γ discrimination

LY = Photon Yield / Phonon Yield

Ref: Phys Rev D 100, 102002 (2019)

Introduction

- Challenges in dark matter search
- Experimental Techniques for Direct DM search
- A few important examples
- Our Initiative: Jaduguda Underground Science Laboratory (JUSL)
- Conclusion and outlook

JADUGUDA UNDERGROUND SCIENCE LABORATORY (JUSL)

- Reduce cosmic muon background
- Reduce gamma ray background
- Monitor & reduce radon background
- Monitor & Reduce neutron background

Background Measurements at UCIL, Jaduguda

Muon Flux measurements using 4-fold coincidence

Neutron background measurements with combined fast and thermal neutron detectors

Targeted Direct Search experiment at JUSL: Hydrogen-rich superheated drop detectors Sensitive to low WIMP mass. (next talk)

Concluding Remarks / Summary:

- > Review of experimental techniques for DM direct search.
- > Direct Search: Physics issues and challenges involved.
- > A couple of world-leading DM search examples briefly illustrated:
- Huge to Tiny spanning sensitivity from 10s of GeV to sub GeV WIMP.
- > A glimpse of Indian initiative for the future scientists
 - (DINO, miniDINO)

