Characterization of sapphire detector for CEvNS search at MINER

Mouli Chaudhuri

(On behalf of the MINER collaboration)

National Institute of Science Education and Research, Jatni, HBNI, India RAPID workshop, 2021, University of Jammu

Outline:

- MINER experiment
- Reactor anti-neutrinos
- Sapphire detector
- Test facility and experimental set up
- Detector performance
- Conclusion and outlook

Introduction to MINER

Introduction

- Mitchell Institute Neutrino Experiment at Reactor (MINER) is reactor based neutrino experiment at Texas A&M University, USA.
- 1 MW reactor as the source of electron anti-neutrinos up to few MeV¹.
- MINER detectors: Ge, Si, Sapphire scintillator detector (Al₂O₃).

Fig1: Exclusion plot² for direct detection DM search experiments

Science goal

- Precise measurement of Coherent Neutrino Nucleus scattering (CEvNS) cross-section.
- Search for Axion-Like-Particles (ALP's) and sterile neutrino oscillation.

¹ V.I.Kopeikin et al, Particles and Nuclei, Letters. 2001 No. 5

² SuperCDMS limit plotter

Reactor anti-neutrinos (v)

Reactor fuel	²³⁵ U (20%, LEU)
Reactor power	1 MW
Energy per ²³⁵ U fission	$200~{ m MeV}$
v yield per fission	~ 6
v energy per fission	$1.5~{ m MeV}$
v flux at 1 m from core	$\sim 10^{12} \text{cm}^{-2} \text{s}^{-1}$

CEvNS detection at reactor

- Lower the neutrino energy, more the flux
- Lower neutrino energy implies lower recoil energy
- Lower the mass number, higher recoil energy

Challenges

- Understanding and reduction of the backgrounds
- Low energy threshold (< 100 eV) detectors.

Detector and it's detection principle

Principle:

- Interaction induces recoil phonons and photons.
- Phonons are detected by Transition-Edge-Sensors (TES) on the detector surface.
- Total photons are collected using Si HV detector placed at coincidence with sapphire .

Sapphire scintillator detector

Superconducting layer on the surface operating near $T_{\rm c}$

Read out of phonon energy as an electronic signal due to change in TES resistance

Specification:

- Detector mass: 72 g.
- Made up of Al₂O₃
- Dimension: 7.6 mm x 4 mm
- Phonon sensors: A, B, C and D.
- Voltage applied ~ 0 V

Advantages:

- Efficient in phonon collection due to better matching of phonon collector fins (Al) to Al₂O₃
- Sensitive for low recoils
- Lower baseline resolution than semiconductor detectors with TES

4

Test Facility (TF) and Experimental site at Nuclear Science Center (NSC)

Experimental site at NSC

Picture of the TF

Detector testing site using NISER's Bluefors dilution refrigerator

Top-

down

view

NSC

of

Schematic of the planned experimental setup with shielding

Detector's tower installation and shielding with Bluefors at NSC for MINER engineering run

MINER data analysis flowchart

Data analysis: result from TF

No cut 0V 600 400 200 0 10 20 30 40 50 60 70 80 Energy (keV)

Calibrated phonon energy of sapphire

Combined phonon energy in OF unit

- Voltage: 0 V
- Observable: phonon energy
- Calibration source: ²⁴¹Am (14 keV gamma)
- Readout channels: A, B, C, D
- We observed a baseline resolution of ~ 25 eV which equates to a conservative (3σ) threshold of ~ 75 eV.

Data analysis: result from NSC (reactor off)

With cut

Co-added spectrum

0.6

0.4

0.2

-0.5

• Phonon noise performance is worser than TF.

- Data quality cuts are applied to select bulk events in search for in-situ Al fluorescence.
- 1.5 keV Al fluorescence is identified in each channels.
- Baseline resolution of ~ 80 eV is measured.

OF amp C

0.5 1 Energy (eV)

Result from NSC SS background rate in sapphire

- Events with energy deposition above the threshold in sapphire and energy deposition consistent with noise in the other detectors are considered as single scatter events (SS).
- SS background rate is ~1200 DRU in reactor off condition.

Differential Rate Unit (DRU): counts/keV/day/kg

Data	No. of events after SS cut	Det mass	Run length (days)	Energy interval (keV)	No. of events in the range	DRU (counts/keV/days /kg)	
Reactor off	54669	72 g	0.84	70 (50-120)	5377	1265	9

Conclusion and outlook

- Performance of sapphire detector at TF and at the reactor site has been shown from the recent data.
- The detector shows baseline resolution at TF ~ 25 eV whereas at the experimental site it shows baseline resolution of ~ 80 eV which is higher than at TF. Reasons for this are being investigated.
- From the reactor off data Al fluorescence has been identified.
- The single scatter background rate in the detector is ~ 1200 DRU in the energy range 70-120 keV.
- The detector could be a excellent candidate for CEvNS and low mass dark matter search.
- MINER plans to take more engineering runs with different payload using sapphire with Ge and Si HV in coincidence.
- Using this detector technology MINER plans to detect CevNS and ALP's in from reactor.

Thank you

Back up

Experimental spectra of ²⁴¹Am

241
Am $\frac{84.6\%}{\alpha \text{ decay}}$ \rightarrow 237 Np

	Gamma lines (keV)	Source/ transtion lines
²⁴¹ Am	11.8	$\mathrm{Np}\ \mathrm{L_{l}}$
	14	$\mathbf{Am/Np}\ \mathbf{L}_{\alpha}$
	17.7	$\mathrm{Np}\ \mathrm{L}_{\scriptscriptstyle{eta}}$
	21	$\mathrm{Np}\ \mathrm{L}_{_{\mathrm{\gamma}}}$
	26	Am
	59.5	Am

- Most of the decay of ²⁴¹Am populated the excited level of ²³⁷Np with energy 59.5 keV.
- Several low energy gamma lines are seen for the transition of the M-shell electrons to L-shell.
- In the data, $59.5~\rm keV$ line is seen only for 0V and 20V. After calibration using $59.5~\rm keV$, we obtain the calibration factor for $17.7~\rm keV$ line.
- For 40V to 200V data, 17.7 keV line is used for calibration.

Coincidence between sapphire and Si HV

• ²⁴¹Am 60 keV peak in Sapphire shows linearity with applied voltages.

Optimal Filter (OF) method flowchart

- **OF method:** A fitting method to determine the amplitude of a noisy signal.
- OF fit maximizes S/N ratio by transforming the signal from a time domain to frequency domain where the fitting is performed by distinguishing noisy part of the signal from the underlying true signal.

Input

Signal: S(t)

Pulse template: A(t)

Noise template: $\xi(t)$

Sampling frequecy

 $S(t) = aA(t - t_0) + n(t)$

Where,

a = scaling factor

n = gaussian noise

 $t_0 = time delay$

OF amplitude: a OF χ^2

Find 'a' when χ^2 is minimum

$$\chi^{2} = \int_{-\infty}^{\infty} \frac{\left| S'(\omega) - aA'(\omega) \right|^{2} d\omega}{\xi'(\omega)}$$

Phonon signal from sapphire

A schematic of the two TES's connected in a chain. Blue is Al, red is W.

An example of pulse in sapphire