

RAPID2021

Numerical Evaluation of Resistive Plate Chamber (RPC)

Subhendu Das

Saha Institute of Nuclear Physics, Kolkata Homi Bhabha National Institute, Mumbai

Motivation

- Resistive Plate Chamber is a particle detector with large output signal, good efficiency, time and position resolution.
- RPCs are useful in particle tracking, muon tomography, medical imaging and triggering data acquisition.
- A simulation study to identify the appropriate choice of electrode and spacer materials to get an optimal performance of Resistive Plate Chamber (RPC) for muon tomography setup.

Muon Tomography Setup

- Muon tomography is a system to detect material using scattering property of cosmic muon.
- Uses Coulomb scattering of the cosmic ray muons.
- Tracking requires large and multiple detectors (like RPC)
- A multi-parameter data acquisition (DAQ) is required

Resistive Plate Chamber (RPC)

- Two parallel plate electrodes of 3mm thick with high bulk resistivity with 2 mm gap.
- Conductive coating on both electrodes for uniform high voltage distribution.
- A suitable gas mixture is flown through the gap between the electrodes.
- Two readout plates are used to collect the signal which are isolated from conductive coating using mica.

Simulation Software

- COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics simulation software.
- Electric Currents module is used to find current and field configuration by solving three equations.

$$\vec{\nabla} \cdot \vec{J} = Q_{j,v}$$
 $\vec{J} = \sigma \vec{E} + \vec{J}_e$ $E = -\vec{\nabla} V$

Here, $V \longrightarrow potential$,

 $E \longrightarrow electric field,$

J → current density,

 $\sigma \longrightarrow \text{electrical conductivity}$

 $J_e \longrightarrow \text{external current density}$

 $Q_{j,v} \longrightarrow$ rate of change in volume charge density

Simulation Model

- A 3D-model RPC of dimension 10 cm × 10 cm
- Electrode thickness 3 mm and gas-gap 2 mm
- Width of Side-spacers 5 and thickness 2 mm
- Diameter of button-spacer 10 mm and thickness 2 mm
- Conductive coated area 8 cm x 8 cm

RAPID 2021

Comparison with others results

Section of RPC	Calculated current (nA)	Simulated current (nA)
Spacers	0.22	0.15
Frame	2.29	2.32
Insulation film	66.63	66.67
Gas	0.09	0.09

Table 1: Current comparison with Ammosov et al [NIMA 401 (1997) 217-228]

Variant A (whole plane is covered with graphite)

- RPC dimension 50cm x 50cm
- 16 button spacers with diameter 13 mm, frame width 15 mm ($\rho = 10^{12} \Omega$ -cm, $\epsilon = 4$).
- Bakelite thickness 1.6 mm , $\rho = 10^{12} \Omega$ -cm, $\epsilon = 4$.
- Insulation film thickness = 0.6 mm, $\rho = 5x10^{15}$ Ω -cm, $\epsilon = 3$.
- Gas gap = 2.0 mm, $\rho = 10^{18} \Omega$ -cm, $\epsilon = 1$.
- Applied HV = 8 kV

Subhendu Das

Surface Resistivity

- Suitable surface resistivity range from 100K to few M Ohm/square)
- Low surface resistivity causes attenuation of output signal.

Dark Current

- Maximum dark current flows through the side and button spacers
- Dark current depends on spacer resistivity rather than electrode resistivity.

Electric Field

• Ratio between spacer and electrode resistivity greater than 10³ provides better field uniformity

Effect of non-uniform surface resistivity on surface potential

Potential throughout the surface is uniform.

Summary and Future Plans

- Suitable surface resistivity of conductive coating 100k–1M ohm/square.
- Dark current depends on bulk resistivity of the spacer material.
- Ratio between spacer and electrode resistivity greater than 10³ provides better field uniformity. Suitable resistivity for electrode material 10¹¹ to 10¹³ ohm-cm and for spacers 10¹⁴ to 10¹⁶ ohm-cm.
- In future, we have plan to perform few experimental measurements to corroborate the simulation results.

Collaborators

- Jaydeep Datta
- Nayana Majumdar
- Supratik Mukhopadhyay

Acknowledgements

- I like to thank the organizers for giving me the opportunity to present my work here.
- I would like to thank my lab colleagues Sridhar Tripathy, Prasant Kumar Rout, Vishal Kumar, Promita Roy, and Pralay Das for there advice and suggestions.
- I like to express my gratitude towards SINP and UGC for helping me financially throughout the work.

Thank You