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Introduction

* Major advantage: With a multi-GEM layer structure, a very high

effective gain (up to 10° with some gases) can be attained with each

GEM layer working at an individually much lower gain thus avoiding
discharge problems.

* Simulation: Comparative simulation results for single, double and

triple GEMs, along with some preliminary triple and quadruple
layer results



Simulation steps (characteristics of the detector)

Commercial software ANSYS + free software GARFIELD++

design the detector geometry

Step 1 Building field map set boundary conditions
optimize the mesh of the
structure for the electric
potential calculation of each
finite element

v ANSYS https://www.ansys.com/

Step 2 ANSYS
Garfield++ mnitialization
primary ionization
charge transportation

Y signal readout
Step 3 Garfield++ Garfield++ i

https://garfieldpp.web.cern.ch/garfieldpp/




Simulation model — GEM foil geometry and gas

* Schematics of single GEM * Microscope view of GEM + Standard hexagonal
detector foil GEM foil
! SOpm|
5pum copper
70pm hole
™~
140pm pitch
Y-COORDINATE
Fabio Sauli, The gas electron multiplier (GEM): Operating principlesand applications, https://gartieldpp.web.cern.ch/garfield

Nuclear Instruments and Methods in Physics Research A 805 (2016) 2-24 pp/examples/triplegem/

e The foil (e.g. 50 um thick kapton) is metalized on both sides (e.g. 5 um copper) and has
a pattern of holes (e.g. 70 um with a 140 um pitch).

* Gas: 70% Ar + 30% CO,



Simulation model — detector configuration in the simulation

* Summary of detector configuration in the simulation

drift transfer | induction HYV divider

distance | distance | distance

transfer | induction
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Simulation model

* Electron's drift lines produced by one initial electron in a single, double and triple
GEMs using Garfield++

* Detector model: S. Bachmann’s paper /s. Bachmann, et al., Nucl. Instrum. Meth. A4 479, 294-308 (2002)]
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Simulation model

* Electron's drift lines produced by one 1nitial electron in a triple and quadruple
GEMs using Garfield++

* Detector model: Rajendra Nath Patra’s paper /Rajendra Nath Patra, et al., Nucl. Instrum. Meth. 4 906,
37-42 (2018)]
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Simulation results

* Gain: given by the number of electrons created by each primary
electron that reaches the anode

In (gain)
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Simulation results

* Spatial resolution: key parameters for tracking systems and
extracted from the width of the residual distribution reached on

the anode/readout plate
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Simulation results

* Energy resolution:

central for GEM detectors working 1n
proportional mode and other devices aiming for a measurement of the

deposited energy
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Simulation results

* Electron transparency: the ratio of secondary electron arrived at the
readout and all of secondary particles (especially electron)
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Simulation results

* Efficiency: the probability of a trespassing particle to yield the
expected signal and, if applicable, to overcome a threshold value

needed have this signal recognized
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Simulation results

* Gain: given by the number of electrons created by each primary
electron that reaches the anode
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Simulation results

* Spatial resolution: key parameters for tracking systems and
extracted from the width of the residual distribution reached on
the anode/readout plate

e Difference

290

—e— 3 GEM X between triple
= 2804 e
c S IGEMY and quadruple
3 270 —o— 4 GEM X .
= quadruple GEM e 4 GEMY GEMs 1s about
S e — 25 um/mm
= 250 -- g o et e
% o ~25um
() 240 fion-mnmmmeodommrmemecbo e T
e .
T 7 e triple GEM
:%g 220
Q
W 210
200 T T T T T T T
280 300 320 340 360 380 400 420

AVGEM single [V] 18



Simulation results

* Electron transparency: the ratio of secondary electron arrived at the
readout and all of secondary particles (especially electron)
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Simulation results

* Efficiency: the probability of a trespassing particle to yield the
expected signal and, if applicable, to overcome a threshold value
needed have this signal recognized
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Summary

* Simulation study with Garfield++ and ANSYS
* Single, double and triple GEMs

* As the number of GEM layers 1s increased, the gain difference
between experiment and simulation increases

* Energy resolution deteriorates with additional GEM layers

* Spatial resolution becomes poorer as the distance between the first
GEM and the anode increases

* While there are some difference in electron transparency, single,
double, and triple GEMs are pretty much the same

* The smaller GEM layer is faster, arriving soonest at 100% efficacy

* Triple and quadruple GEM
* Gain, spatial resolution, electron transparency and efficiency are
studied and results are similar with single, double and triple GEMs
* To conduct simulations 1n various delta GEM V and increase the
number of events and study the energy resolution and so on and
compare these with triple and quadruple detectors 2



