Simulations of multi-layer GEM systems from single to quadruple GEMs

Aera JUNG, Yong BAN, Dayong WANG, Yue WANG, Licheng ZHANG

- school of physics, Peking University (PKU), China

• Simulation results of single, double and triple GEMs

• Simulation results of triple and quadruple GEMs

• Simulation results of single, double and triple GEMs

• Simulation results of triple and quadruple GEMs

• **Major advantage:** With a multi-GEM layer structure, a very high effective gain (up to 10⁶ with some gases) can be attained with each GEM layer working at an individually much lower gain thus avoiding discharge problems.

• **Simulation:** Comparative simulation results for single, double and triple GEMs, along with some preliminary triple and quadruple layer results

• Commercial software ANSYS + free software GARFIELD++

Simulation model – GEM foil geometry and gas

- Schematics of single GEM detector
- Microscope view of GEM foil
- Standard hexagonal GEM foil

Fabio Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research A 805 (2016) 2-24

https://garfieldpp.web.cern.ch/garfield pp/examples/triplegem/

- The foil (e.g. 50 um thick kapton) is metalized on both sides (e.g. 5 um copper) and has a pattern of holes (e.g. 70 um with a 140 um pitch).
- Gas: $70\% \text{ Ar} + 30\% \text{ CO}_2$

Simulation model – detector configuration in the simulation

• Summary of detector configuration in the simulation

		drift distance [mm]	transfer distance [mm]	induction distance [mm]	HV divider		
					drift field [kV/cm]	transfer field [kV/cm]	induction field [kV/cm]
S.Bachmann's paper [S. Bachmann, et al., Nucl. Instrum. Meth. A 479, 294-308 (2002)]	single	3	1 / 2	1/2	2	3.5	3.5
	double	3	1 / 2	1/2	2	3.5	3.5
	triple	3	1 / 2	1 / 2	2	3.5	3.5
Rajendra Natl Patra's paper [Rajendra Nath Patra, et al., Nucl. Instrum. Meth. A 900 37-42 (2018)]	triple	4.8	2	2	O.1M 1M 0.5M 1		
	quadruple ,	4.8	2	2			

- Electron's drift lines produced by one initial electron in a single, double and triple **GEMs** using Garfield++
- Detector model: S. Bachmann's paper [S. Bachmann, et al., Nucl. Instrum. Meth. A 479, 294-308 (2002)]

- Electron's drift lines produced by one initial electron in a **triple and quadruple GEMs** using Garfield++
- Detector model: Rajendra Nath Patra's paper [Rajendra Nath Patra, et al., Nucl. Instrum. Meth. A 906, 37-42 (2018)]

• Simulation results of single, double and triple GEMs

• Simulation results of triple and quadruple GEMs

• Gain: given by the number of electrons created by each primary electron that reaches the anode

The experimental data (green) originally from Bachmann's paper [S. Bachmann, et al., Nucl. Instrum. Meth. A 479, 294-308

11

 Spatial resolution: key parameters for tracking systems and extracted from the width of the residual distribution reached on the anode/readout plate

- distance from the first GEM to the readout plate increases by about 15 um/mm
- i.e. triple GEM (3/2/2/2) has a spatial resolution of ~ 240 um (=150 + 15 x 6)

• **Energy resolution:** central for GEM detectors working in proportional mode and other devices aiming for a measurement of the deposited energy

• Electron transparency: the ratio of secondary electron arrived at the readout and all of secondary particles (especially electron)

• Efficiency: the probability of a trespassing particle to yield the expected signal and, if applicable, to overcome a threshold value needed have this signal recognized

• Simulation results of single, double and triple GEMs

• Simulation results of triple and quadruple GEM

• Gain: given by the number of electrons created by each primary electron that reaches the anode

The experimental data (green) originally from Rajendra's paper [Rajendra Nath Patra, et al., Nucl. Instrum. Meth. A 906, 37-42 (2018)] 17

 Spatial resolution: key parameters for tracking systems and extracted from the width of the residual distribution reached on the anode/readout plate

Difference
between triple
and quadruple
GEMs is about
25 um/mm

• Electron transparency: the ratio of secondary electron arrived at the readout and all of secondary particles (especially electron)

• Efficiency: the probability of a trespassing particle to yield the expected signal and, if applicable, to overcome a threshold value needed have this signal recognized

• Simulation results of single, double and triple GEMs

• Simulation results of triple and quadruple GEM

Summary

- Simulation study with Garfield++ and ANSYS
- Single, double and triple GEMs
 - As the number of GEM layers is increased, the gain difference between experiment and simulation increases
 - Energy resolution deteriorates with additional GEM layers
 - Spatial resolution becomes poorer as the distance between the first GEM and the anode increases
 - While there are some difference in electron transparency, single, double, and triple GEMs are pretty much the same
 - The smaller GEM layer is faster, arriving soonest at 100% efficacy

Triple and quadruple GEM

- Gain, spatial resolution, electron transparency and efficiency are studied and results are similar with single, double and triple GEMs
- To conduct simulations in various delta GEM V and increase the number of events and study the energy resolution and so on and compare these with triple and quadruple detectors