
Add Numerical Differentiation
Support in Clad
Garima Singh | Google Summer of Code 2021
Mentors: Vassil Vassilev and Alexander Penev

Overview
What is Clad?

Clad is an automatic differentiation library implemented as a Clang plugin.

What is Automatic Differentiation (AD)?

Very generally speaking, AD is a set of techniques to evaluate the derivative of a computer program. It
computes the exact derivative of a program (if any exists).

Why Numerical Differentiation for an AD library?

Due to some constraints it might be inefficient or even impossible to use AD for a function, this is

where numerical differentiation comes in.

Basic Implementation Idea
The formula:

The idea:

For multi-argument functions, have a ‘magic’
function to pick and update the correct parameters
and forward the rest of the parameters.

For a general case:

Basic Implementation Idea

The implementation:

Implement the ‘magic’ function using templates,
parameter packs and index_sequences to pick the
correct ith parameter.

This allows us to be very concise and flexible in our
implementation (as will be described later). We also
have a functionality to print the errors associated with
numerical differentiation.

 An algorithmic overview of the implementation looks
like the following:

for each i in args, do:

fx1 := f(updateIndexParamValue(args,
i, sequence)...)

fx2 := f(updateIndexParamValue(args,
i, sequence)...)

grad[i][0] := (fx1 - fx2)/(2 * h)

end for

Some Examples: With Clad

For the clad use-case, we synthesize a call to either the “forward” numerical differentiation function or
the “reverse” numerical differentiation function.

The target function The generated derivative

Some Examples: Standalone

Standalone, the numerical differentiation is capable of a lot. We have the many ways listed below:

● For in-built scalar and non-scalar types. These includes doubles, floats, double* , etc.
● Support for user defined types as input (both value and pointer forms). This can be achieved by

overloading the UpdateIndexParamValue with the special type.
● Can differentiate overloaded operators.
● Can differentiate functors.

Thank You!

You can contact me at garimasingh0028@gmail.com!

mailto:garimasingh0028@gmail.com

