Ad Numerical Differentiation
Support in Clad

Garima Singh | Google Summer of Code 2021
Mentors: Vassil Vassilev and Alexander Penev

Overview

What is Clad?
Clad is an automatic differentiation library implemented as a Clang plugin.
What is Automatic Differentiation (AD)?

Very generally speaking, AD is a set of techniques to evaluate the derivative of a computer program. It
computes the exact derivative of a program (if any exists).

Why Numerical Differentiation for an AD library?

Due to some constraints it might be inefficient or even impossible to use AD for a function, this is

where numerical differentiation comes in.

Basic Implementation Idea

The formula:
fl(z) = fle+h) - flz —h)
2h
For a general case:
f("'?‘iv'!'- + h‘_\ ---) - f(.....\flf.i

—h, ..

)

Neg. 210 oo Ty). =
f({IERUS PRy n);z, 9%

The idea:

For multi-argument functions, have a ‘magic’
function to pick and update the correct parameters
and forward the rest of the parameters.

Basic Implementation Idea

The implementation:

for each i1 in args, do:
Implement the ‘magic’ function using templates,
parameter packs and index_sequences to pick the
correct it parameter.

fx1l := f (updatelndexParamValue (args,

i, sequence)...)

This allows us to be very concise and flexible in our .fX2 := t(updatelndexParamvalue (args,

implementation (as will be described later). We also i, sequence)...)

have a functionality to print the errors associated with .

numerical differentiation gradlil [0] := (fxl - £x2)/(2 * h)
end for

An algorithmic overview of the implementation looks
like the following:

Some Examples: With Clad

For the clad use-case, we synthesize a call to either the “forward” numerical differentiation function or
the “reverse” numerical differentiation function.

The target function The generated derivative

|

test 2 dargoO(X)
d x = 1;
forward central difference(::loglo, x, 0, 0, Xx)

Some Examples: Standalone

Standalone, the numerical differentiation is capable of a lot. We have the many ways listed below:

e Forin-built scalar and non-scalar types. These includes doubles, floats, double*, etc.

e Support for user defined types as input (both value and pointer forms). This can be achieved by
overloading the UpdateIndexParamvalue with the special type.

e Can differentiate overloaded operators.

e Can differentiate functors.

Thank You!

You can contact me at garimasingh0028@gmail.com!

mailto:garimasingh0028@gmail.com

