
PORTABILITY FOR THE PATATRACK WITH
ALPAKA

Antonio Petre

Mentors
Wahid Redjeb

Felice Pantaleo

Goal & Tasks

■ The goal was to port and optimize the Patatrack using the Alpaka library

■ Tasks:
– Profiling Alpaka
– Tests for atomic and barriers
– Change assert in Alpaka application
– Add ScopedContext

■ Full report: https://github.com/antoniopetre/pixeltrack-standalone/blob/gsoc/gsoc-
documentation.md

https://github.com/antoniopetre/pixeltrack-standalone/blob/gsoc/gsoc-documentation.md

Profiling Alpaka

Tests for atomics and barriers

Times are simillar

Change assert in Alpaka application
■ Occupancy in the Alpaka version was lower

■ In the CUDA version, “assert” is enabled by setting GPU_DEBUG

■ I changed “assert” with “ALPAKA_ASSERT_OFFLOAD” (assert is enabled only if
ALPAKA_DEBUG_OFFLOAD_ASSUME_HOST is set)

Add ScopedContext

■ Difference in kernels time between Alpaka CUDA and Native CUDA ~ 0.07 seconds

■ Difference for API calls time between Alpaka CUDA and Native CUDA ~ 3.60 seconds

■ Example: 8004 streams created in Alpaka CUDA, only 2 streams created in Native
CUDA

■ Port the stream/event workflow from the Native CUDA to the Alpaka version

■ Possible problem: some helper methods must be specialized for each accelerator

Problems & Final results

■ Two significant problems:
– TBB version doesn’t work with the new stream/event logic (the validation tests fail +

after asynchronous copy was added => Segmentation Fault)
– The current version which works creates a new stream for every event (like the legacy

version), but it uses the same workflow as the Native CUDA implementation. The Native
CUDA version uses a reusable object, but this doesn’t work in Alpaka (runtime errors).
Important speedup can be obtained after these errors will be solved.

■ Final results:

THANK YOU!

