# RF for RF separated beams

Frank Gerigk with input from: A. Grudiev, E. Montesinos, W. Wuensch,

30 Sep 2021





## Starting from 3.9 GHz.

| 3.9 ( |
|-------|
| XFE   |
| FNA   |
| Goc   |

May 26, 2016.

| f                      | 3 - 5 GHz |
|------------------------|-----------|
| deflection per station | 15 MV     |
| spill length           | ~5 s      |
| aperture               | ?         |

GHz has been used for ILC crab cavities [1], [2], LCLS-II harmonic cavities [3], and for the AL Kaon beam separator [4] (basis for ILC crabs). od basis for an AMBER design.

[1] C. Adolphsen et al, Design of the ILC Crab Cavity System, EUROTeV-Report-2007-010

[2] P. Pierini et al, European XFEL 3.9 GHz System, SRF 2013.

[3] N. Solyak, 3.9 GHz components design, 3.9 GHz review, FNAL,

[4] M. McAshan, R. Wanzenberg, Design of a Transverse Mode Cavity for Kaon Separation, FERMILAB-TM-2144.







|                                            | ILC values          |  |
|--------------------------------------------|---------------------|--|
| f                                          | 3.9 GHz             |  |
| cells                                      | 9                   |  |
| R/Q                                        | 235 Ohm             |  |
| Q <sub>0</sub> (1.8 K)                     | 3 x 10 <sup>9</sup> |  |
| Active length /cavity                      | 0.34 m              |  |
| aperture radius                            | 15 mm               |  |
| deflection/cavity                          | ~2.05 MV            |  |
| Peak deflection                            | ~6 MV/m             |  |
| Q <sub>L</sub> (determined by beam loading | 3 x 10 <sup>6</sup> |  |

### ILC Crab Cavities

|                     | AMBER<br>extrapolation |  |
|---------------------|------------------------|--|
| cavities/station    | 8                      |  |
| cryomodules/station | 1                      |  |
| CM length           | ~6 m                   |  |
| deflection/cavity   | 1.875 MV               |  |
| peak deflection     | 5.5 MV/m               |  |
| QL                  | ~1 x 10 <sup>7</sup>   |  |

• Conservative deflecting voltage.

• Synergies with ILC, XFEL and LCSL-II.



### Power and loaded Q

- Dissipated power is negligible (5 W at 1.8 K, higher temperatures would be ok).
- Power given to the beam is also negligible (femto Ohms..)
- Q<sub>L</sub> is usually determined by beam loading but with zero beam it will be defined by the need to controlled.
- concern. Passband modes need to be studied.
- Maximum Q<sub>L</sub> used in operating machines:
  - 1.2 x 10<sup>7</sup> (HIE-ISOLDE, 100 MHz)

max. detuning - 1 x 10<sup>7</sup> (PIP-II 650 MHz) - 4 x 10<sup>7</sup> (LCLS-II, 1.3 GHz) A  $Q_L$  of ~10<sup>7</sup> at several GHz is challenging but seems feasible, especially if a Ferro Electric Fast Reactive Tuner (FE-FRT) is employed (prototyped at CERN).  $P_{diss}$  $4(R/Q) \bot Q_{ex}$  $(R/Q)Q_0$  $\omega$ 

stabilise phase and amplitude. Microphonics is most likely the major disturbance that needs to be

• With zero beam and no bunch structure, Lower Order Modes or Higher Order Modes should not be a





### Generator power vs Q<sub>ex</sub>



Pgen [kW

Frank Gerigk, RF separated beams, 30 Sep 2021

- For ILC type deflecting cavities, the frequency needs to be stabilised to a few 100 Hz to keep the RF power in the kW range.
- Seems feasible but may need a FE-FRT.
- What is needed for the RF separation?







- twice as expensive as a series module (for small series of 10 50 modules).
- module.
- which could be adapted.
- for disassembly, cavity cleaning, cavity testing, re-assembly, module re-testing.

### Cryomodules

• A new cryomodule development is costly. The first prototype/pre-series module typically is • Re-using existing designs can significantly reduce the development cost for the first

• XFEL and LCLS-II have 8-cavity 3.9 GHz modules (harmonic cavities, not deflecting ones),

• With 2 modules of 8 cavities, it is recommended to have 1 spare (e.g. the prototype/preseries module). In case an intervention on the cavities is needed it will take at least 1 year













Example for 3.9 GHz 9-cell ILC crab cavity from: C. Adolphsen et al, Design of the ILC Crab Cavity System, EUROTeV-Report-2007-010

• The aperture can be increased but at the cost of lowering R/Q (higher power requirements) and higher magnetic surface fields (lowering the electric field level at which the cavity quenches). • Aperture scaling with frequency: ~1/f (maintaining deflecting voltage and peak surface fields)





- Today the frequency is too high for solid state and other types of tubes. This leaves klystrons as RF source of choice.
- However, given the relatively low power level Silicon Carbide transistor amplifiers may be possible (inquiry with companies started).
- For the time being it is highly recommended to base the frequency on existing klystrons. New developments will be very expensive for a small number of tubes.

### RF sources



### Available klystrons

 Highly recommended to base the frequency on existing klystrons. New developments will be very expensive for a small number of tubes.

| Manufacturer | type                    | frequency   | average power | comment                                   |
|--------------|-------------------------|-------------|---------------|-------------------------------------------|
| Canon        | ?                       | 5 GHz       | 500 kW        | under development                         |
| Canon        | E3739B                  | 2.45 GHz    | 30 kW         |                                           |
| CPI          | VKS-7960M -<br>VKS-8269 | 2.45 GHz    | 50 - 500 kW   |                                           |
| CPI          | VKC-7819B/U             | 4.4 - 5 GHz | 2.6 kW        |                                           |
| CPI          | VKC-7810F               | 3.9 GHz     | 3 kW          |                                           |
| Thales       | ?                       | 3.7 GHz     | 500 kW        | used in Fusion reactors                   |
| Thales       | ?                       | 4.6 GHz     | 60 kW         | production would need<br>to be re-started |





- have < 10 Hz during operation).
- stabilisation with FE-FRT.
- 3.9 and ~4.6 GHz seem manageable.
- The 3.9 GHz version will be cheaper because:
  - one can start from existing 3.9 GHz 8 cavity modules
  - 4.6 GHz will need more cavities to get to the same "active length"
  - increased RF power.

### Outlook

 Need to set limits on aperture, frequency, and max. phase/frequency deviation. Stabilisation to a few hundred Hertz is probably ok. In HIE-ISOLDE at 100 MHz we

• Amplifiers will have to provide some kW/cavity (max.), depending on achieve

- maintaining a "large" aperture at 4.6 GHz means higher peak fields and



- IPAC2021.
- J. Tückmantel, Cavity-Beam-Transmitter Interaction Formula Collection with Derivation, CERN-ATS-Note-2011-002 TECH.

### References

### • N. Shipman et al., Ferroelectric Fast Reactive Tuner Applications For SRF Cavities,

Frank Gerigk, RF separated beams, 30 Sep 2021

