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IL RETTORE 

Visto il D.P.R 10/11/1957, n. 3; 
Visto il D.P.R. 11/7/1980, n. 382; 
Vista la Legge 9/5/1989, n. 168; 
Vista la Legge 24/12/1993, n. 537; 
Visto il D. Lgs. 30/3/2001, n. 165; 
Vista la Legge 4/11/2005, n. 230 ed in particolare l’art 1, comma 9; 
Vista la Legge 30/12/2010, n.240 ed in particolare l’art. 29, comma 7; 

  Visti i DD.MM. 29/7/2011 e 12/6/2012 con cui sono stati determinati i settori concorsuali, 
ai sensi dell’art. 15 della Legge 240/2010; 
  Visto il D.P.R. 15/12/2011, n. 232 “Regolamento per la disciplina del trattamento 
economico dei professori e ricercatori universitari, a norma dell’art. 8, commi 1 e 3 della legge 30 
dicembre 2010, n. 240”, ed in particolare l’art. 2, comma 6 che prevede l’applicazione delle 
disposizioni del Regolamento stesso anche ai professori e ricercatori nominati in ruolo ai sensi 
dell'articolo 1, comma 9, della legge 4 novembre 2005, n. 230; 
         Visto lo Statuto dell’Università degli Studi di Torino, emanato con D.R. n. 1730 del 
15/03/2012;                    
 Vista la deliberazione  del Consiglio di Amministrazione n. 7/2016/II/3 del 19/7/2016 
“Applicazione art. 1, comma 9 della Legge 4/11/2005 n. 230 per la copertura di posti di professore 
ordinario, associato e di ricercatore mediante chiamata diretta di studiosi stabilmente impegnati 
all’estero e copertura di posti di professore ordinario mediante chiamata diretta di studiosi di 
chiara fama: definizione dei criteri per la determinazione della classe di stipendio”,  con cui è stato 
approvato che l’attribuzione fino alla classe 4^ di stipendio ai docenti nominati tramite chiamata 
diretta sia effettuata dagli uffici della Direzione Risorse Umane in relazione all’anzianità di servizio 
e che l’eventuale richiesta di attribuzione della 5^ classe stipendiale venga formulata con motivata 
deliberazione del Consiglio di Dipartimento, tenendo conto del curriculum ed evidenziando la 
levatura e il particolare profilo scientifico del docente; 
 Visto il D.P.C.M. 3/9/2019, relativo all’adeguamento del trattamento economico del 
personale non contrattualizzato; 

Preso atto delle deliberazioni del 7/11/2019 e 20/1/2020, con cui il Consiglio del 
Dipartimento di Fisica ha proposto la chiamata diretta nel ruolo di professore di seconda fascia ai 
sensi dell'art., 1 comma 9 della Legge 230/2005, del Prof. Simon BADGER, studioso 
impegnato all’estero, per i l  settore scientifico-disciplinare FIS/02 – Fisica teorica modelli 
e metodi matematici , settore concorsuale 02/A2 – Fisica teorica delle interazioni 
fondamentali; 

Viste le deliberazioni del 17/12/2019 e del 18/12/2019, con le quali il Senato Accademico 
e il Consiglio di Amministrazione hanno rispettivamente espresso parere favorevole e approvato 
l’inoltro al MIUR della proposta di chiamata diretta del Prof. Simon BADGER nel ruolo di 
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Kinematics: momenta in (e.g.) 
Minkowski space, masses etc.

Quantum numbers: 
spin, colour charge etc.

Ah,c,...(i ! f) : M 7! C
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Cross section: 
more generally, 

differential 
observables*

Squared amplitude: 
summed over states and 

averaged initial
Phase-space integral:
over final state kinematics

* apologies for over simplified picture! Most QFTs filled with IR divergences - must also sum over unresolved 
radiation (i→f +X). Observables must be well defined with respect to this radiation or ‘infrared safe’. 

 
UV divergences also appear and must be renormalised into couplings or treated with an EFT expansion



Badger Part B section 2 (B2) JetDynamics

ERC Consolidator Grant 2017
Research proposal [Part B2]

Part B2: The scientific proposal

Section a: State of the art and Objectives

Precision QCD at colliders:

Run 2 at the Large Hadron Collider (LHC) has already given particle physicists their first look at 13 TeV hadron
collisions and produced some amazing new results. However, the data collected so far only represents a few
percent of the total planned during the lifespan of the LHC so there is a huge potential for future discoveries
of new fundamental physics. New ideas for experimental analyses have led to dramatic improvements in sys-
tematic uncertainties. As a result a wide class of observables will be measured at the percent level precision
in the near future.

Keeping theoretical uncertainties in line with experiments is an essential task if we hope to get the maximum
amount of information out of the LHC. This task requires enormous effort and deep insight into the mathe-
matical structure of quantum field theory in order to overcome the technical challenge of computing precise
perturbative quantum corrections. Finding solutions to the problems that these challenges raise bridges the gap
between mathematics and physics and new ideas often come from unlikely places. The road between math-
ematical concepts and phenomenological predictions is extremely long and notoriously difficult and success
relies on a broad knowledge of perturbative gauge theories.

High energy hadron-hadron collisions present an extremely complex environment. First and foremost these
collisions are controlled by the strong force which binds quarks and gluons inside the proton. Our model of
the strong force, Quantum Chromodynamics (QCD), follows the principle of asymptotic freedom. Without this
modern collider physics would not be possible since it allows us to separate long distance interactions from
short distance effects, the latter of whichwe canmodel through perturbativemethods to probe the highest energy
interactions. The effect of asymptotic freedom on the strong coupling ↵s is to decrease its value as the energy
of the hard scattering increases. The value at the average collision energy seen at the LHC is around 0.1 and so
a naive counting of the perturbative convergence implies that both next-to-leading order (NLO) corrections of
order ↵s and next-to-next-to-leading order (NNLO) corrections of order ↵2

s are needed to obtain percent level
predictions. To have any hope of reaching a percent level precision at least NNLO accuracy will be required.

Quantum corrections to strong interactions give rise to the appearance of additional radiation in the final state.
This radiation is seen as deposits of hadronic energy in the detector which can be clustered to form jets. Un-
derstanding the dynamics of these jets is an important step in finding precise descriptions of the highest energy
scattering which the LHC requires. This task requires the ability to model high multiplicity scattering of jets
in association with Standard Model particles such as Higgs and vector bosons. These high multiplicity jet ob-
servables are the key to pinning down the transverse momentum (pT ) distributions of Standard Model (SM)
particles. Current technology is only able to model 2 ! 3 scattering processes at NLO. This project addresses
the need for precise descriptions of 2 ! 3 scattering and will new develop technology for NNLO predictions.

The project targets key observables which are of high priority at the LHC [1] and aims to provide a general
framework for NNLO predictions beyond 2 ! 2 scattering at hadron colliders. Obtaining precise descriptions
of these observables will open up new ways to probe the high energy properties of the SM. In particular we
target processes that are sensitive to the fundamental parameter ↵s in the high energy regime, Higgs and vector
boson pT spectra and the Higgs boson coupling with the electroweak sector of the SM. These proton-proton
scattering processes can be denoted pp ! ABC where each final state ABC can probe different properties of
the fundamental forces:

process precision observables
pp ! 3j jet multiplicity ratios, ↵s at high energies, 3-jet mass
pp ! �� + j background to Higgs pT , signal/background interference effects
pp ! H + 2j Higgs pT , Higgs coupling through vector boson fusion (VBF)
pp ! V + 2j Vector boson pT ,W+/W� ratios and multiplicity scaling
pp ! V V + j backgrounds to pT spectra for new physics decaying via vector boson

1

precision frontier : 2 → 3 scattering

(2 → 3)/(2 → 2) ratio 
quantities become accessible

high precision observables

systematic errors cancel

proton

proton

jet

jet

jet

?
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non-abelian structure 
quickly leads to an 
explosion of terms

at loop level we find new 
- an much harder 

problems - associated 
with how to evaluate loop 

integrals… 



a selected history
increasingly precise predictions in gauge theory

‘50 ‘60 ‘70
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integrand reduction 
(Ossola, Papadopulos, 

Pittau), BCFW,…

Regge theory

dσ NNLO
pp→H

Differential 
Equations
Kotikov

QED self energies 
(Elliptic integrals):

Sabry

phase-space 
slicing:

Giele, Glover, 
Kosower

loops

infra-red

collider pheno

MHV
Parke, 
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Twistor 
String
Witten
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experiment drives theory

4

Those calculations actually became 
available  in the following 12 months (see 
Z.Kunszt opening talk on Wed), thanks to 
new ideas (e.g. SUSY relations), which 
surpassed the potential improvements due 
to the availability of more powerful 
computers.

But each technology eventually saturates, 
and further progress required even more 
radical conceptual quantum leaps ….

[taken from talk by Michelangelo Mangano at MHV@30 (2016)]
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Then, in 1986….
[Parke, Taylor  PRL 56 (1986) 2459] 

Spinor-helicity formalism: [Berends, 
Kleiss, de Causmaeker, Gastmans, Troost, Wu, 

Gunion, Kunszt, Giele, Kujif, Xu, Zhang, Chang]

A(0)(1+, 2+, 3+, . . . , n+) = 0

A(0)(1�, 2+, 3+, . . . , n+) = 0

A(0)(1�, 2�, 3+, . . . , n+) =
h12i4

h12ih23i · · · h(n� 1)nihn1i
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Colour ordering: manage gauge group 
factors ⇒ reduce number of independent terms

habi =
p
|(pa + pb)2| exp(i✓ab)
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(pa + pb)
2 = sab
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habi⇤ = ±[ab]
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on-shell simplicity
S-matrix elements are simpler than the 

Feynman diagram representation suggests

unitarity cuts
[Bern, Dixon, Dunbar, Kosower (1994)]

BCFW recursion, on-shell diagrams
[Britto, Cachazo, Feng, Witten (2005)][Arkani-Hamed, Bourjaily, 

Cachazo, Goncharov, Postnikov, Trnka (2012)]

geometric formulation of gauge theory?
‘amplitudehedron’ [Arkani-Hamed, Trnka (2013]

L
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where are the bottlenecks?

• easy to generate (e.g. QGRAF)
• efficient processing with computer algebra (e.g. FORM)
• often very large intermediate expressions
• cancellations between diagrams

the number of diagrams is not a good measure of complexity



accurate matrix elements
(perturbative)

phase-space sampling

infra-red subtraction/
regularisation

non-perturbative

H
adronisation

H
adronisation

Hadronisation

Hadronisation
Show

er
Parton

Show
er

Parton

Parton

Shower

Shower

Parton

PDF

PDF

MC event generator

PDFs, hadronisation…

parton shower / resummation

underlying event

how can we make reliable 
theoretical error estimates?

LO > 50%

NLO 20-30%

NNLO 5-10%

perturbative error



precision QCD predictions

B

V

R

VV+V2

VR

RR RRR

VRR

VVR+(VR)2

VVV+VV×V

LO

NLO

NNLO

N3LO

loops

legs
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i , C(0)

ij
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ij
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ijk
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ijk

S(0)
ijk, C

(0)
ijkl

(d)σ N3LO (2→1)
[Anasastiou, Duhr, Dulat, Furlan, Gehrmann, 

Herzog, Lazopoulos, Mistlberger]
[Berhing, Melnikov, Rietkerk, Tancredi, Wever]

[Dulat, Mistlberger, Pelloni] [Duhr, Dulat, Mistlberger]

dσ NNLO (fully differential 2→3)
qq→3γ [Chawdhry, Czakon, Mitov, Poncelet] 

[Kallweit, Sotnikov, Wiesemann]
qq→γγj [Chawdhry, Czakon, Mitov, Poncelet] 

pp→3j [Czakon, Mitov, Poncelet] 

towards dσ N3LO 2→2 
3-loop 4-point amplitudes

[Ahmed, Henn, Mistlberger]
[Jin, Luo] [Caola, von Manteuffel, Tancredi]

co
m

pl
ica

te
d 

int
eg

ra
ls

complicated phase-space

don't forget! (N)NLO EW, mass 
effects, resummation, showers…

cpuumfofdl

d� = d�LO + ↵sd�
NLO + ↵2

sd�
NNLO
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~1-10 %~10-30 %



precision frontier : 2 → 3 scattering
at two loops

(amplitude) =
X

(coe�cient)(integral)

pp ! �� + j

pp ! 3j

pp ! H + 2j

pp ! W + 2j

pp ! Z + 2j

pp ! WW + 2j

gg ! ggg

↵s(mZ) ⇠ 0.1

�
NNLO = + + +

d�

0

@ +X

1

A = + + +

+ + +O(↵8

s)

LO NLO

NNLO
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infrared subtraction problem is highly non-trivial, 
plenty of new ideas needed here too of course!



bare amplitudes

finite remainders

sbujpobm!gvodujpot joufhsbmt0tqfdjbm!gvodujpot

vojwfstbm!JS0VW!qpmft
[Catani (1998)][Becher, Neubert (2009)]

[Magnea, Gardi (2009)]

A(L),4�2✏ =
X

i

ci(✏, {p})Fi(✏, {p})
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F (L) = A(L),4�2✏ �
LX

k=1

I(k),4�2✏A(L�k),4�2✏
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Abreu, Agarwal, SB, Brønnum-Hansen, Buccioni, Chawdhry, Chicherin, Czakon, 
Dixon, Dormans, Febres Cordero, Gehrmann, Hartanto, Heinrich, Henn, 

Herrmann, Ita, Kraus, Kryś, Lo Presti, Mitev, Mitov, Mogull, Ochirov, O’Connell, 
Page, Papadopoulos, Pascual, Peraro, Poncelet, Ruf, Sotnikov, Tancredi, 

Tommasini, von Manteuffel, Wasser, Wever, Zeng, Zhang, Zoia, ... 

precision frontier : 2 → 3 scattering
at two-loops in QCD
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arithmetic for 

IBPs and 
amplitudes

C++ pentagon 
functions



joufhsbmt0tqfdjbm!gvodujpot

A(L),4�2✏ =
X

i

ci(✏, {p})Fi(✏, {p})
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poly-logarithms?

differential equations:

iterated integrals

Kotikov (1991), Bern, Dixon, Kosower (1993), Remiddi (1997), 
Gehrmann, Remiddi (2000), Henn (2013), Papadopoulos (2014)

d

ds
~MI(s, ✏) = ✏A(s). ~MI(s, ✏)
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‘canonical form’

integration-by-parts identities: [Chetyrkin, Tkachov (1981)]

Algorithmic solution: large linear algebra problem [Laporta (2000)]

Z
dDk

@

@kµ
vµQ

i(k � qi)2
= 0
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finite field arithmetic
not a new idea - used in many computer algebra systems

framework for amplitude
computations: FINITEFLOW [Peraro (2019)]

NB: multiplicative inverse

solving IBP systems: e.g. FINRED [von Manteuffel],

KIRA+FIREFLY [Maierhoefer, Usovitsch, Uwer, Klappert, Lange]

extremely efficient solutions 
to linear algebra systems



sbujpobm!gvodujpot

A(L),4�2✏ =
X

i

ci(✏, {p})Fi(✏, {p})
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multiple numerical (mod prime) evaluations can used to 
reconstruct complete analytic information 

Newton (polynomial) and Thiele (rational) 
interpolation 

Rational external kinematics: e.g. 
Momentum Twistors (Hodges)

Trivial parallelisation of 
sample points



putting everything together:
a summary of latest results



new results!

pp!"" +j pp!3j

pp!""" 

a basis of pentagon
functions identified!

Gehrmann, Henn, Lo Presti (2018)

Chicherin, Gehrmann, Henn, 
Wasser, Zhang, Zoia (2020)

Abreu, Dixon, Herrmann, 
Page, Zeng (2020)

efficient numerical 
evaluations for all 
master integrals

Chicherin, Henn, Mitev (2018)

Sotnikov, Chicherin (2020) Abreu, Page, Pascual, Sotnikov
[2010.15834]

Abreu, Febres-Cordero, 
Ita Page, Sotnikov 

[2102.13609]

Chawdhry, Czkaon, Mitov 
Poncelet [2103.04319]

Chawdhry, Czkaon, Mitov 
Poncelet [2103.04319]

Agarwal, Buccioni, von Manteuffel, 
Tancredi [2102.01820]

fast numerical codes for
evaluation in physical region

massless 5-particle scattering

Agarwal, Buccioni, von Manteuffel, 
Tancredi [2105.04585]

SB, Brønnum-Hansen, Chicherin, 
Gehrmann, Hartanto, Henn, 
Marcoli, Marzucca, Moodie, 

Peraro, Krys, Zoia [2106.08664] 



new results!

all planar integrals 
known!

5-particle scattering with an off-shell leg

[Papadopoulos Tommasini, Wever (2019)]
[Padadopoulos, Wever (2019)]

[Canko, Padadopoulos, Syrrakos (2020)]
[Syrrakos (2020)]

[Abreu, Ita, Moriello, Page, Tschernow, Zeng (2020)]
pp ! Wbb̄
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analytic finite remainders. 
numerical evaluation with 

generalised series expansions 

pp ! Hbb̄
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SB, Hartanto, Zoia 
[2102.02516]

SB, Hartanto, Kryś, Zoia 
[2107.14733]

leading colour, on-shell 
W, massless b

leading colour, massless b

[Abreu, Ita, Page, Tschernow 2107.14180]

non-planar 
hexa-box



well studied process - 
fully analytic form still 

challenging

new results!
analytic scattering amplitudes with massive propagators

SB, Chaubey, Hartanto, Marzucca [2102.13450]

Bonciani, Broggio, Di Vita, Ferroglia, Mandal,
Mastrolia, Mattiazzi, Primo, Ronca, Schubert,
Torres Bobadilla, Tramontano  [2106.13179]

[Baernreuther, Czakon, Chen, Fiedler, 
Poncelet (2008-2018)]

numerical solutions 
very successful

analytic solutions for qq!tt
and all non-elliptic sectors

of gg!tt known
[Bonciani, Ferroglia, Gehrmann, Studerus, von 

Manteuffel, Di Vita, Laporta, Mastrolia, Primo, Schubert, 
Becchetti, Casconi, Lavacca (2009-2019)]

leading colour helicity 
amplitudes with top-

quark loops
gg ! tt̄
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e+e� ! µ+µ�
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complete 
analytic form



and now…a few technical details

SB, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto,
Henn, Marcoli, Moodie, Peraro, Zoia [2106.08664]

SB, Hartanto, Zoia [2102.02516]

SB, Hartanto, Kryś, Zoia [2107.14733]

SB, Chaubey, Hartanto, Marzucca [2102.02516]



computational framework
QGRAF + FORM/MATHEMATICA + 

rational phase-space
(Momentum Twistors)

colour ordered
helicity amplitudes

linear relations, univariate apart,
polynomial reconstruction

complete 
reduction setup 
implemented in 

FINITEFLOW

M (2)({p}, ✏) =
X

i

ci({p}, ✏)Fi({p}, ✏)
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M (2)({p}, ✏) =
X

i

di({p}, ✏)MIi({p}, ✏)
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F (2)({p}) =
X

i

ei({p})moni(f
(w)
j )
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IBPs

IR/UV sub + expansion to 
function basis IBPs generated 

with help from 
LITERED/

FINITEFLOW



gg ! ��g
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SB, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto,
Henn, Marcoli, Moodie, Peraro, Zoia [2106.08664]

which is a degree-4 polynomial in the sij . The pseudo-scalar invariant tr5 therefore intro-
duces an algebraic dependence on the kinematics, since tr5 = ±

p
�. We emphasise that the

sign of tr5 changes under parity conjugation, which acts by flipping the sign of the spatial
momentum components,

P :
�
p0i , ~pi

�
�!

�
p0i ,�~pi

�
, (2.5)

and under odd-signature permutations of the external momenta.
We work in the s12 physical scattering region, which is delimited by the requirements

that all s-channel invariants are positive and all t-channel invariants are negative,

s12, s34, s35, s45 > 0 , (2.6)
s13, s14, s15, s23, s24, s25 < 0 , (2.7)

together with the negativity of the Gram determinant, � < 0, which follows from the
real-valuedness of the momenta [18].

The scattering of gluons and photons is a one-loop process at leading order. We de-
compose the scattering amplitude as

A(1g, 2g, 3g, 4� , 5�) = gsg
2
e

�
Q2

uNu + Q2
dNd

�
fa1a2a3

1X

`=1

⇣
n✏

↵s

4⇡

⌘`
A(`)(1g, 2g, 3g, 4� , 5�) ,

(2.8)

where n✏ = i(4⇡/µ2
R)✏e�✏�E with µR being the renormalisation scale. In Eq. (2.8), gs and

ge are the strong and electromagnetic coupling constants, ↵s = g2s/(4⇡), Nq and Qq are
the number of quarks of type q and their electric charge in units of the electron charge,
and ai is the adjoint SU(Nc) colour index of the ith gluon. The one-loop amplitude can be
obtained from permutations of pure gluon scattering [74, 75].

We further expand the loop amplitudes in powers of Nc and nf (the number of light
flavour fermions),

A(1)(1g, 2g, 3g, 4� , 5�) = A(1)
1 (1g, 2g, 3g, 4� , 5�) ,

A(2)(1g, 2g, 3g, 4� , 5�) = NcA
(2)
1 (1g, 2g, 3g, 4� , 5�)

+
1

Nc
A(2)

2 (1g, 2g, 3g, 4� , 5�) + nfA
(2)
3 (1g, 2g, 3g, 4� , 5�) .

(2.9)

Surprisingly, the subleading-colour two-loop amplitudes contain only planar integrals, while
the leading colour contains all of the four independent families shown in Figure 1. This
pattern is the opposite to that of the quark-initiated channels computed in Refs. [70–72], for
which the leading-colour contributions involve only the planar integrals and are therefore
simpler to compute. Providing a prediction for the gluon-initiated channel necessarily
requires handling the most complicated integral families. A simple analysis of the colour
factors of each of the three-gluon vertex diagrams shown in Figure 2 illustrates how this
pattern arises. Photons couple to any of the fermion propagators, and the colour factors
remain the same. It can then be seen that non-planar contributions can come from the

– 4 –

which is a degree-4 polynomial in the sij . The pseudo-scalar invariant tr5 therefore intro-
duces an algebraic dependence on the kinematics, since tr5 = ±

p
�. We emphasise that the

sign of tr5 changes under parity conjugation, which acts by flipping the sign of the spatial
momentum components,

P :
�
p0i , ~pi

�
�!

�
p0i ,�~pi

�
, (2.5)

and under odd-signature permutations of the external momenta.
We work in the s12 physical scattering region, which is delimited by the requirements

that all s-channel invariants are positive and all t-channel invariants are negative,

s12, s34, s35, s45 > 0 , (2.6)
s13, s14, s15, s23, s24, s25 < 0 , (2.7)

together with the negativity of the Gram determinant, � < 0, which follows from the
real-valuedness of the momenta [18].

The scattering of gluons and photons is a one-loop process at leading order. We de-
compose the scattering amplitude as

A(1g, 2g, 3g, 4� , 5�) = gsg
2
e

�
Q2

uNu + Q2
dNd

�
fa1a2a3

1X

`=1

⇣
n✏

↵s

4⇡

⌘`
A(`)(1g, 2g, 3g, 4� , 5�) ,

(2.8)

where n✏ = i(4⇡/µ2
R)✏e�✏�E with µR being the renormalisation scale. In Eq. (2.8), gs and

ge are the strong and electromagnetic coupling constants, ↵s = g2s/(4⇡), Nq and Qq are
the number of quarks of type q and their electric charge in units of the electron charge,
and ai is the adjoint SU(Nc) colour index of the ith gluon. The one-loop amplitude can be
obtained from permutations of pure gluon scattering [74, 75].

We further expand the loop amplitudes in powers of Nc and nf (the number of light
flavour fermions),

A(1)(1g, 2g, 3g, 4� , 5�) = A(1)
1 (1g, 2g, 3g, 4� , 5�) ,

A(2)(1g, 2g, 3g, 4� , 5�) = NcA
(2)
1 (1g, 2g, 3g, 4� , 5�)

+
1

Nc
A(2)

2 (1g, 2g, 3g, 4� , 5�) + nfA
(2)
3 (1g, 2g, 3g, 4� , 5�) .

(2.9)

Surprisingly, the subleading-colour two-loop amplitudes contain only planar integrals, while
the leading colour contains all of the four independent families shown in Figure 1. This
pattern is the opposite to that of the quark-initiated channels computed in Refs. [70–72], for
which the leading-colour contributions involve only the planar integrals and are therefore
simpler to compute. Providing a prediction for the gluon-initiated channel necessarily
requires handling the most complicated integral families. A simple analysis of the colour
factors of each of the three-gluon vertex diagrams shown in Figure 2 illustrates how this
pattern arises. Photons couple to any of the fermion propagators, and the colour factors
remain the same. It can then be seen that non-planar contributions can come from the

– 4 –

Figure 1: Independent integral families for the gg ! g�� amplitude. The non-planar
topologies appear only in the leading-colour amplitude.

(a) Nc (b) Nc (c) Nc (d) 1
Nc

(e) Nc � 1
Nc

Figure 2: The colour factor of each diagram in the gg ! g�� follows from the representa-
tive three-gluon, two-loop diagrams with a closed fermion loop shown here.

diagrams (a)–(c) only. Diagrams (d)–(e), which contribute to the subleading colour, remain
planar (allowing for permutations of the external momenta).

In our setup, we reduce directly to the finite remainder where the UV and IR poles
have been subtracted analytically. The poles take a particularly simple form since there is
no tree-level process and the one-loop amplitudes are finite in ✏. The one- and two-loop
finite remainders are given in terms of the bare amplitudes by [76–80],

F (1) = A(1)(1g, 2g, 3g, 4� , 5�) ,

F (2) = A(2)(1g, 2g, 3g, 4� , 5�) �
✓
I(1) +

3

2

�0
✏

◆
A(1)(1g, 2g, 3g, 4� , 5�) ,

(2.10)

where �0 = 11Nc/3 � 2nf/3 and

I(1) = �n�(✏)

⇢
Nc

✏2

✓
µ2
R

�s12

◆✏

+

✓
µ2
R

�s23

◆✏

+

✓
µ2
R

�s31

◆✏�
+ 3

�g
✏

�
, (2.11)

with n�(✏) = e✏�E/�(1� ✏) and �g = �0/2 in the ’t Hooft-Veltman scheme. The logarithms
arising from the ✏-expansion of I(1) can be analytically continued to the s12 channel by
adding a small positive imaginary part to each sij . The �0 term in the definition of the
two-loop finite remainder accounts for the strong coupling renormalisation. The finite
remainders inherit from the amplitudes the decomposition in powers of Nc and nf given by
Eq. (2.9),

F (1)(1g, 2g, 3g, 4� , 5�) = F (1)
1 (1g, 2g, 3g, 4� , 5�) ,

F (2)(1g, 2g, 3g, 4� , 5�) = NcF
(2)
1 (1g, 2g, 3g, 4� , 5�)

+
1

Nc
F (2)
2 (1g, 2g, 3g, 4� , 5�) + nfF

(2)
3 (1g, 2g, 3g, 4� , 5�) .

(2.12)

Our final results are presented in the ’t Hooft-Veltman scheme, although we make the
distinction between the dimension d of the loop integration and the dimension ds = gµµ
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analytic reconstruction

finite remainder original stage 1 stage 2 stage 3* stage 4*

F (2)
1;1 (1�, 2�, 3+, 4+, 5+) 69/60 28/20 24/0 19/10 11/5

F (2)
1;0 (1�, 2�, 3+, 4+, 5+) 78/69 44/35 43/0 21/10 16/9

F (2)
1;1 (1�, 2+, 3+, 4�, 5+) 59/55 30/27 29/0 18/15 17/4

F (2)
1;0 (1�, 2+, 3+, 4�, 5+) 89/86 38/36 38/0 20/16 17/3

F (2)
1;1 (1+, 2+, 3+, 4�, 5�) 40/42 25/27 25/0 15/18 15/0

F (2)
1;0 (1+, 2+, 3+, 4�, 5�) 66/66 32/33 32/0 13/13 12/3

Table 1: Maximal numerator/denominator polynomial degrees of the rational coefficients
of the most complicated finite remainders at each stage of our reconstruction strategy. The
column “original” refers to the rational coefficients prior to any optimisation. The asterisk
* highlights that, after the partial fraction decomposition in stage 3, the coefficients to be
reconstructed depend on one fewer variable.

rational coefficients of the two-loop diphoton finite remainders we apply them consecutively
as follows.

Stage 1. We fit the linear relations among the rational coefficients with an ansatz, as
discussed in Section 4.1. We begin with the (ds � 2)1 components and use the co-
efficients of the two-loop leading-colour five-gluon finite remainders as ansatz. For
the (ds � 2)0 components, which are more complicated, we add to the ansatz the
(ds � 2)1-coefficients already reconstructed.

Stage 2. We guess the factors from the ansatz (4.5) by reconstructing a univariate slice
and multiply them away, as explained in Section 4.2.

Stage 3. We partial fraction on the fly with respect to x4, applying the algorithm presented
in Section 4.3. The coefficients to be reconstructed after this stage are those in the
ansatz for the partial fraction decomposition (4.11), and depend on one fewer variable.

Stage 4. We reconstruct another univariate slice and perform an additional factor guessing,
as in the second stage.

The drop in the complexity of the rational coefficients after each stage for the most com-
plicated two-loop diphoton finite remainders, which are in the Maximally-Helicity-Violating
(MHV) configurations, is illustrated in Table 1. As proxy for the complexity of the coef-
ficients we use the maximal numerator/denominator polynomial degrees, which can be
evaluated by reconstructing univariate slices as discussed in Section 4.3.

Interestingly, we observe that the coefficients of the subleading-colour 3g2� two-loop
finite remainders F (2)

2 can be expressed in terms of those of the leading-colour two-loop five-
gluon finite remainders. The coefficients of the leading-colour 3g2� two-loop remainders
F (2)
1 instead are not entirely fixed by the five-gluon ones, but using the latter as ansatz in
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numerical performance
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Figure 3: Histogram of the error estimate on the two-loop evaluations as given by the
scaling test. We use the evaluation strategy with a target accuracy of three digits and show
errors for all precision levels. We see 1.8% of points failing f64/f64 evaluation, with 1.2%

passing at f128/f64 and 0.6% passing at f128/f128. The evaluation strategy achieves
target accuracy for all of the 100 000 physical phase-space points tested.

7 Conclusions

In this paper we have presented a complete, full colour, five-point amplitude at two loops
in QCD. All helicity configurations have been implemented into the NJet C++ library, which
provides an efficient and stable evaluation over the physical scattering region. Though the
algebraic complexity of the amplitude is considerable, the direct analytic reconstruction of
the finite remainders was possible by making use of linear relation amongst the coefficients
and partial fractioning in one variable, which could be done without any analytic knowledge
of the intermediate steps in the reduction. We expect these techniques will have applications
to other important high-multiplicity two-loop calculations with more external scales such as
five-particle scattering with an off-shell leg, for which there has also been recent progress [17,
81, 112–116]. We have found a form that is suitable for phenomenological applications
and look forward to new precision predictions for diphoton production at hadron colliders
including the dominant N3LO corrections we have computed here.
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We present an analytic computation of the two-loop QCD corrections to ud̄ ! W+bb̄ for an
on-shell W -boson using the leading colour and massless bottom quark approximations. We perform
an integration-by-parts reduction of the unpolarised squared matrix element using finite field recon-
struction techniques and identify an independent basis of special functions that allows an analytic
subtraction of the infrared and ultraviolet poles. This basis is valid for all planar topologies for
five-particle scattering with an o↵-shell leg.

INTRODUCTION

The production of aW -boson in association with a pair
of b-quarks at hadron colliders is of fundamental impor-
tance as a background to associated Higgs production.
The process is one of a prioritised list of 2 ! 3 scat-
tering problems for which higher order corrections are
necessary to keep theory in line with data. These ampli-
tudes are related to a large class of processes contributing
to pp ! W +2j production and the work presented here
represents a significant step towards achieving a complete
classification of the missing two-loop amplitudes.

The process has been studied extensively at next-to-
leading order (NLO) [1–5] and was the first in a set of
o↵-shell five-particle amplitudes to be studied using the
unitarity method [6, 7]. The present state of the art in
phenomenological studies allows full mass e↵ects, shower
matching, electro-weak corrections and the inclusion ad-
ditional QCD jets [8–10].

A numerical computation of the two-loop helicity am-
plitudes [11] demonstrated the importance of an e�cient
analytic form with a well understood basis of special func-
tions. Major steps forward came via e�cient numeri-
cal evaluation of the di↵erential equations [12] and ana-
lytic evaluation in terms the Goncharov Polylogarithms
(GPLs) [13, 14]. These results opened the door for a fully
analytic amplitude computation yet significant challenges
remain. The complexity of the external kinematics rep-
resents a challenge for integral reduction techniques and
the identification of a minimal basis of special functions is
required to find analytic simplifications after subtracting
universal infrared and ultraviolet divergences.

E�cient amplitude and integration-by-parts reduction
(IBP) [15, 16] using finite field arithmetic [17–27] has
gained significant interest in recent years. Through mul-
tiple evaluations of a numerical algorithm [28–31], fully
analytic forms for planar massless five-particle ampli-
tudes have been extracted using a rational parametri-
sation of the kinematics [32]. Following a complete
understanding of a pentagon function basis [33, 34], a
large number of two-loop amplitudes are now available

in compact analytic form [35–47]. We have also seen
the first phenomenological predictions at NNLO in QCD
for the production of three photons in hadron colliders
after combination with real-virtual and double real radi-
ation [48, 49].
In this short letter we outline the extension of this

method to processes with an additional mass scale.

LEADING COLOUR ud̄ ! W+bb̄ AMPLITUDES

The leading order process consists of two simple Feyn-
man diagrams as shown in Fig. 1. We label our process
as follows,

d̄(p1) + u(p2) ! b(p3) + b̄(p4) +W
+(p5), (1)

where p
2
1 = p

2
2 = p

2
3 = p

2
4 = 0 and p

2
5 = m

2
W . The colour

decomposition at leading colour is
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where n = m✏Nc↵s/(4⇡), ↵s = g
2
s/(4⇡) and m✏ =

i(4⇡)✏e�✏�E . gs and gW are the strong and weak cou-
pling constants respectively.
We interfere the L-loop partial amplitudes A

(L) in
Eq. (2) with the tree-level partial amplitude A

(0) to ob-
tain the unrenormalised L-loop unpolarised squared par-
tial amplitude,
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FIG. 1. Leading order Feynman diagrams contributing to
ud̄ ! W+bb̄ .
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FIG. 1. Leading order Feynman diagrams contributing to
ud̄ ! W+bb̄ .

2

After the interference with the tree-level amplitude the
analytic expression can be written in terms of scalar in-
variants,

s12 = (p1 + p2)
2
, s23 = (p2 � p3)

2
, s34 = (p3 + p4)

2
,

s45 = (p4 + p5)
2
, s15 = (p1 � p5)

2
, s5 = p

2
5 . (4)

Our results are presented after subtraction of infrared
and ultraviolet divergences, F (L) = M

(L)
� P

(L), where
P

(L) takes the well known form [50–53]. The explicit
form for our process using the same conventions can be
found in Ref. [11].

AMPLITUDE REDUCTION

Feynman diagrams for the ud̄ ! W
+
bb̄ scattering are

generated using Qgraf [54]. In the leading colour ap-
proximation, there are 2, 16 and 210 diagrams contribut-
ing to the tree level, 1-loop and two-loop amplitudes,
respectively. Upon interference of the L-loop partial am-
plitude A

(L) with the tree level partial amplitude A
(0)

according to Eq. (3), the squared partial amplitude can
be written as

M
(2)({p}) =

Z 2Y

i=1

d
d
ki

i⇡d/2e�✏�E

X

T

NT (d, ds, {k}, {p})Q
↵2T D↵({k}, {p})

,

(5)
where pi are the external momenta which live in four
dimensions, and ki are the loop momenta in d = 4 � 2✏
dimensions. We work in the conventional dimensional
regularisation (CDR) scheme where d = ds = g

µ
µ.

We treat the �5 to be anti-commuting with all other
� matrices in d dimensions and the polarisation sum is
performed in the unitary gauge,

i

X

�

"
µ⇤
W (p5,�)"

⌫
W (p5,�) = �g

µ⌫ +
p
µ
5p

⌫
5

m
2
W

. (6)

In obtaining the numerator function NT , the fermion
traces can safely be evaluated in d dimensions since the
�5 terms from the L-loop numerator cancelled out with
the �5 terms from the tree level partial amplitude.

To perform the reduction of the amplitude onto a ba-
sis of master integrals we first map each topology T to
a set of 15 maximal cut or master topologies as shown
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FIG. 2. Sample Feynman diagrams in the leading colour two-
loop ud̄ ! W+bb̄ amplitude.

2

34

1 5

T1

4

3

1

5

2T2

3

2

4

1

5T3

4 3

3 2

415

2 5

1
T4 T5

5

2

3
1

4
T6

1

5

2
4

3
T7

4

1

5
3

2
T8

3

4

1
2

5
T9

2

3

4
5

1
T10

T11

5

1

2

3

4
T12

1

4

5

2

3
T13

4

3

1

5

2
T14

3

2

4

1

5
T15

2

5

3

4

1

FIG. 3. Topologies with maximum number of propagators.

in Fig. 3. The master topologies are then defined with a
spanning set of 11 propagators and, after tracking shifts
in the loop momentum, the change of variables for each
topology T can be computed. The resulting squared par-
tial amplitude is now written as a linear combination of
scalar integrals Ii

M
(2)({p}) =

X

i

ci(✏, {p}) Ii(✏, {p}). (7)

An analytic form of the unreduced squared matrix ele-
ment above is derived using a collection of Form [55, 56]
and Mathematica routines. The integrals appearing in
Eq. (7) are not all independent. Relations between inte-
grals I can be found using IBP identities and the squared
amplitude can be written in terms of an independent set
of master integrals as follows

M
(2)({p}) =

X

i

di(✏, {p}) MIi(✏, {p}). (8)

The reduction to master integral basis is then per-
formed within the FiniteFlow framework [23]. We use
LiteRed [57] to generate the IBP relations in Math-
ematica, together with the Laporta algorithm [58] to
solve them numerically over finite fields. We note that
only master topologies T1 � T10 are included in the IBP
system since the integrals belonging to master topologies
T11�T15 can be mapped onto master topologies T6�T10.
The procedure for performing the reduction onto master
integrals using IBP relations is of course extremely well
known, the challenge in this example is one of enormous
algebraic complexity. By encoding the problem within
a numeric sampling modular arithmetic we are able to
e�ciently solve the Laporta system with tensor integral
ranks of up to five, avoiding all large intermediate expres-
sions. For planar topologies such as the ones appearing
here the application of syzygy relations [59–61] to opti-
mise the IBP reduction would likely lead to a substantial
speed-up in computation time, although in our case it
was not found to be necessary. We did not perform an
analytic reconstruction after completing the set up of the

6 scalar invariants
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loop ud̄ ! W+bb̄ amplitude.
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FIG. 3. Topologies with maximum number of propagators.

in Fig. 3. The master topologies are then defined with a
spanning set of 11 propagators and, after tracking shifts
in the loop momentum, the change of variables for each
topology T can be computed. The resulting squared par-
tial amplitude is now written as a linear combination of
scalar integrals Ii

M
(2)({p}) =

X

i

ci(✏, {p}) Ii(✏, {p}). (7)

An analytic form of the unreduced squared matrix ele-
ment above is derived using a collection of Form [55, 56]
and Mathematica routines. The integrals appearing in
Eq. (7) are not all independent. Relations between inte-
grals I can be found using IBP identities and the squared
amplitude can be written in terms of an independent set
of master integrals as follows

M
(2)({p}) =

X

i

di(✏, {p}) MIi(✏, {p}). (8)

The reduction to master integral basis is then per-
formed within the FiniteFlow framework [23]. We use
LiteRed [57] to generate the IBP relations in Math-
ematica, together with the Laporta algorithm [58] to
solve them numerically over finite fields. We note that
only master topologies T1 � T10 are included in the IBP
system since the integrals belonging to master topologies
T11�T15 can be mapped onto master topologies T6�T10.
The procedure for performing the reduction onto master
integrals using IBP relations is of course extremely well
known, the challenge in this example is one of enormous
algebraic complexity. By encoding the problem within
a numeric sampling modular arithmetic we are able to
e�ciently solve the Laporta system with tensor integral
ranks of up to five, avoiding all large intermediate expres-
sions. For planar topologies such as the ones appearing
here the application of syzygy relations [59–61] to opti-
mise the IBP reduction would likely lead to a substantial
speed-up in computation time, although in our case it
was not found to be necessary. We did not perform an
analytic reconstruction after completing the set up of the

SB, Hartanto, Zoia [2102.02516]



special functions

thanks to work of [Abreu et al (2020)]:

this form allows easy expansion 
to Chen’s iterated integrals

3

reduction in FiniteFlow graphs. Instead we continued
to map the amplitude onto a basis of special functions.
We did, however, perform a gauge invariance check in the
master integral basis: we modified the numerator func-
tions by replacing the loop-amplitude polarisation vector
with p5 and the tree one with p1, and observed that M (2)

vanishes.

A BASIS OF SPECIAL FUNCTIONS FOR THE
FINITE REMAINDER

There are 202 master integrals contributing to the am-
plitude, 196 of them are covered by the 3 independent
pentabox master integral topologies, while 6 are of one-
loop squared type that involve one-loop massive on-shell
bubble integral. We choose the canonical bases of master
integrals constructed in Ref. [12]. They satisfy di↵eren-
tial equations (DEs) [62–65] in the canonical form [66],

d
�!
MI = ✏

58X

i=1

aid logwi
�!
MI , (9)

where
�!
MI is the set of canonical master integrals for any

of the involved topologies, the ai are constant rational
matrices, while {wi}

58
i=1 is a set of algebraic functions of

the external kinematics called letters (see Ref. [12] for
their definition). The alphabet, i.e. the set of all let-
ters, is the same for all planar one-mass five-particle in-
tegrals up to two loops, whereas the constant matrices
ai depend on the topology. In Ref. [12], the authors also
discuss a strategy to evaluate the master integrals nu-
merically, based on the solution of the DEs (9) in terms
of generalised power series [67]. More recently, analytic
expressions of the canonical master integrals in terms of
GPLs [68–70] have become available [13, 14]. Both ap-
proaches allow for the numerical evaluation of the mas-
ter integrals in any kinematic region and with arbitrary
precision. Both approaches, however, also share certain
drawbacks. Whether we reconstruct the prefactors of
the ✏-components of the master integrals in Eq. (8) or we
map the latter onto monomials of GPLs, we cannot sub-
tract the infrared and ultraviolet poles analytically and
reconstruct directly the finite remainder.

We overcome these issues by constructing a basis out of
the ✏-components of the canonical master integrals up to
order ✏4. The crucial tool we employ in this construction
are Chen’s iterated integrals [71]. We can define them
iteratively through

d[wi1 , . . . , win ]s0(s) = d logwin [wi1 , . . . , win�1 ]s0(s) ,

[wi1 , . . . , win ]s0(s0) = 0 ,
(10)

where s denotes cumulatively the kinematic invariants, s0
is an arbitrary boundary point, and the iteration starts
from []s0(s) = 1. The depth n of the iterated integral is

called transcendental weight. We refer to the notes [72]
for a thorough discussion. All GPLs can be rewritten
in terms of iterated integrals. The latter however of-
fer two useful advantages. The first is that – conjec-
turally – they implement automatically all the functional
relations. Once a GPL expression is rewritten in terms
of iterated integrals in a given alphabet {wi}, finding the
functional relations becomes a linear algebra problem,
as ‘words’ [wi1 , . . . , win ] with di↵erent letters are linearly
independent. The second is that it is completely straight-
forward to write out the solution of the canonical DEs (9)
in terms of iterated integrals. Eq. (9) in fact implies the
following di↵erential relation between consecutive com-
ponents of the ✏ expansion of the master integrals,

d
�!
MI(k) =

58X

i=1

aid logwi
�!
MI(k�1)

, 8k � 1 , (11)

where
�!
MI(k) is the O(✏k) term of the master integrals.

Comparing Eq. (11) to Eq. (10), we see that the iter-

ated integral expressions of
�!
MI(k) is obtained by adding

a letter to the right of those of the previous order, shuf-
fling them as prescribed by the constant matrices ai, and
adding the boundary values. The master integrals are
normalised to start from O(✏0) and so the O(✏k) compo-
nents have transcendental weight k.

We used the GPL expressions of Refs. [13, 14] to com-
pute the values of the master integrals in an arbitrary
point s0 with 1100-digit precision. Using the PSLQ algo-
rithm [73], we determined the integer relations among the
boundary values, and rewrote them in terms of a basis of
transcendental constants. Next, we used the di↵erential
equations provided by Ref. [12] to express the relevant
master integrals in terms of iterated integrals. This al-
lowed us to determine a minimal set of linearly indepen-
dent integral components, order by order in ✏ up to ✏

4.

We denote these functions by {f
(w)
i }, where w = 1, . . . , 4

labels the weight. Since each f
(w)
i corresponds to an ✏

component of the master integrals, we can evaluate them
numerically using the methods of Refs. [12–14], with the
additional advantage that they are linearly independent.

In order to subtract the poles analytically, we need
to be able to write in the same basis also the subtrac-
tion term. From the transcendental point of view, the
latter is given by the product of certain logarithms and
transcendental constants coming from the anomalous di-
mensions – ⇡

2 and ⇣3 – times the one-loop amplitude.
In order to accommodate this in the basis, we add the
transcendental constants as elements, and work out the
relations between the functions at each weight and prod-
ucts of lower-weight ones using the shu✏e algebra of the
iterated integrals. As a result, the functions in the basis

{f
(w)
i } are indecomposable, i.e. they cannot be rewritten

in terms of lower-weight elements of the basis.
Armed with this function basis, we can proceed with

also in this work: numerical evaluation with 
generalised series expansions [Moriello (2019)] 

[Chen (1977)]

58 letters including 3 square roots

obey shuffle relations ⇒ 
minimal basis of independent 

function

(lengthy) MPL expressions from 
simplified differential equations

[Canko, Papadopoulos, Syrakkos (2020)]



function basis

• use master integral components as function basis 
    ⇒           for the           component of the      master integral

• high precision evaluation of GPL form (~1000 digits) 
    ⇒ analytic boundaries via PSLQ

• determine relations between integral components by solving linear system 
    ⇒       for the function at weight k

MI(k)i
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derive new differential equation for independent integral components

find analytic cancellation of IR poles



numerical evaluation

5

1000

2000

3000

4000

5000

6000

↵s = 0.118

F
in
it
e
R
em

ai
n
d
er

[G
eV

�
2
]

M
(0) +

�
↵s
4⇡

�
2Re{F (1)

}+
�
↵s
4⇡

�2
2Re{F (2)

}

M
(0) +

�
↵s
4⇡

�
2Re{F (1)

}

M
(0)

0.4 0.5 0.6 0.7 0.8 0.9

1.0

1.1

1.2

x2

R
at
io

to
M

(0
)

FIG. 4. The finite remainder for ud̄ ! W+bb̄ at one and two
loops as a function of the variable x2 defined in Eq. (13).

DISCUSSION AND OUTLOOK

The results we have obtained represent a major step
forward and open the door to phenomenological applica-
tions. The identification of a basis of special functions has
resulted in a substantial speed up over previous studies
as well as uncovering explicit cancellations and reduc-
tion in complexity. To demonstrate the suitability for
phenomenological applications we present the evaluation
on a univariate slice of the physical phase space. For this
we use a parametrisation in terms of energy fractions and
angles of the final state,

p3 = x1
p
s

2 (1, 1, 0, 0) ,

p4 = x2
p
s

2 (1, cos ✓,� sin� sin ✓,� cos� sin ✓) ,

p5 =
p
s (1, 0, 0, 0)� p3 � p4 ,

(13)

where p1 and p2 are taken back-to-back along the z-axis
with a total centre-of-mass energy of s. We have cho-
sen p3 to be produced at an elevation of ⇡

2 from the
z-axis and the on-shell phase space conditions impose

cos ✓ = 1 + 2
x1x2

⇣
1� x1 � x2 �

m2
W
s

⌘
. In Fig. 4 we plot

values of the one- and two-loop finite remainders against
x2 for a configuration with � = 0.1,mW = 0.1, s = 1
and x1 = 0.6. The special functions were evaluated with
DiffExp [79] using rationalized values of the invariants.
An average evaluation time of 260s over 1000 points was
observed and the function is smooth and stable over the
whole region. This demonstrates that even with a basic
setup in Mathematica a reasonable evaluation time can
be achieved and that realistic phenomenology can now be
performed.

The results obtained here pave the way for a broader

class of 2 ! 3 scattering problems. The solution of the
IBP system and the basis of special functions do not de-
pend on the on-shell approximation of the W -boson and
apply equally to the planar sectors of pp ! W/Z+2j (in-
cluding decays) and pp ! H +2j. Going beyond leading
colour for pp ! W/Z + 2j or any complete pp ! H + 2j
amplitudes at two-loops still requires missing informa-
tion on the non-planar master integrals, nevertheless we
believe they can be easily incorporated into the strategy
we introduce here.
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gen. series exp. only with fi(k) in 
finite remainder

evaluate with DIFFEXP 
[Hidding (2020)]

evaluation time 
~ 260s per point

5

Re{M (2)
even/M

(0)
✏=0} Re{tr5M (2)

odd/M
(0)
✏=0}

✏�4 2 0

✏�3 -2.19718713546 0

✏�2 -12.7892676147 -0.000338583992207

✏�1 -7.77698255746 0.0185584093201

✏0 116.073111075 0.0460368719237

Re{F (2)
even/M

(0)
✏=0} Re{tr5F (2)

odd/M
(0)
✏=0}

✏0 144.141227186 -0.0117595964398

TABLE I. Numerical results for the leading colour two-loop
squared partial amplitude, M (2)

k , and finite remainder, F (2)
k ,

normalised to the tree level squared partial amplitude in 4
dimensions, M (0)

✏=0, at the physical point {s12 = 5, s23 =
�1/3, s34 = 11/13, s45 = 17/19, s15 = �23/29, s5 = 1/7}.

ders derived in this work against results from an inde-
pendent helicity amplitude computation in the t’Hooft-
Veltman scheme using the framework of Ref. [11]. For
the convenience of future cross-checks, we provide the

numerical values of M
(2)
k and F

(2)
k at one phase space

point in Table I.

DISCUSSION AND OUTLOOK

The results we have obtained represent a major step
forward and open the door to phenomenological applica-
tions. The identification of a basis of special functions has
resulted in a substantial speed up over previous studies
as well as uncovering explicit cancellations and reduc-
tion in complexity. To demonstrate the suitability for
phenomenological applications we present the evaluation
on a univariate slice of the physical phase space. For this
we use a parametrisation in terms of energy fractions and
angles of the final state,

p3 = x1
p
s

2 (1, 1, 0, 0) ,

p4 = x2
p
s

2 (1, cos ✓,� sin� sin ✓,� cos� sin ✓) ,

p5 =
p
s (1, 0, 0, 0)� p3 � p4 ,

(14)

where p1 and p2 are taken back-to-back along the z-axis
with a total centre-of-mass energy of s. We have cho-
sen p3 to be produced at an elevation of ⇡

2 from the
z-axis and the on-shell phase space conditions impose

cos ✓ = 1 + 2
x1x2

⇣
1� x1 � x2 �

m2
W
s

⌘
. In Fig. 4 we plot

values of the one- and two-loop finite remainders against
x2 for a configuration with � = 0.1,mW = 0.1, s = 1
and x1 = 0.6. The special functions were evaluated with
DiffExp [81] using rationalized values of the invariants.
An average evaluation time of 260s over 1000 points was
observed and the function is smooth and stable over the
whole region. This demonstrates that even with a basic
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FIG. 4. The finite remainder F (L) = F (L)
even + tr5F

(L)
odd for

ud̄ ! W+bb̄ at one and two loops as a function of the variable
x2 defined in Eq. (14).

setup in Mathematica a reasonable evaluation time can
be achieved and that realistic phenomenology can now be
performed.

The results obtained here pave the way for a broader
class of 2 ! 3 scattering problems. The solution of the
IBP system and the basis of special functions do not de-
pend on the on-shell approximation of the W -boson and
apply equally to the planar sectors of pp ! W/Z+2j (in-
cluding decays) and pp ! H +2j. Going beyond leading
colour for pp ! W/Z + 2j or any complete pp ! H + 2j
amplitudes at two-loops still requires missing informa-
tion on the non-planar master integrals, nevertheless we
believe they can be easily incorporated into the strategy
we introduce here.
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b̄bggH helicity
configurations

ri(x) independent
ri(x)

partial
fraction in x5

number of
points

F
(2),1

++++ 63/57 52/46 20/6 3361

+++� 135/134 119/120 28/22 24901

++�� 105/111 105/111 22/12 4797

F
(2),nf ++++ 45/41 45/41 16/6 1381

+++� 94/95 94/95 17/6 1853

++�� 89/95 62/69 18/3 2492

F
(2),n

2
f ++++ 12/8 9/7 0/0 3

+++� 11/16 11/16 3/0 22

++�� 12/20 8/16 8/0 242

Table 1: maximum polynomial degree of the finite remainder coefficients ri(x) together
with the number of points needed for analytic reconstruction in the b̄bggH subprocess
for various fermion-loop contributions. [SZ: Should we mention the number of sample

points?]

b̄bq̄qH helicity
configurations

ri(x) independent
ri(x)

partial
fraction in x5

number of
points

F
(2),1

+++� 82/81 69/70 24/16 10326

F
(2),nf +++� 28/30 25/24 8/6 379

F
(2),n

2
f +++� 6/11 6/11 3/0 22

Table 2: maximum polynomial degree of the finite remainder coefficients ri(x) together
with the number of points needed for analytic reconstruction in the b̄bq̄qH subprocess for
various fermion-loop contributions.

4 A Custom Basis of Special Functions for the Finite Remainders

The one and two-loop finite remainders are expressed as combinations of rational coefficients
– functions of the momentum twistor variables (3.2) – and monomials of the square roots
and of special function of the master integral function basis f . The latter were classified in
Ref. [49] so as to span the cyclic permutations of the planar five-partial integrals with one
massive off-shell leg up to two loops. The function space of the finite remainders is however
simpler than that of the integrals and of the amplitudes. This becomes particularly clear
when we express the special functions in terms of Chen’s iterated integrals [100]. Roughly

– 11 –

A
(1),1

A
(1),nf

Figure 1

A
(2),1

A
(2),nf A

(2),n
2
f

Figure 2

where Â(1) is the unrenormalised one-loop amplitude normalised to the tree-level amplitude.
s1 and s2 are the bottom-quark Yukawa renormalisation constants, and their expressions
can be found in Appendix A. We used a mixed renormalisation scheme where the strong
coupling ↵s and the bottom-Yukawa coupling yb are renormalised in the MS scheme, while
the bottom-quark mass and wave function are renormalised in the on-shell (OS) scheme.
This allows to keep yb finite while taking the bottom-quark mass smoothly to zero (mOS

b
!

0) [65]. Such a mixed renormalisation scheme can be used so long as pure QCD corrections
are considered. In fact, using the MS scheme to renormalise yb allows us to better control
the convergence of perturbative corrections by resumming large logarithms that appear in
the OS scheme, by running the yb to a scale close to the Higgs mass. In the presence
of electroweak (EW) corrections, however, the relationship between yb and mb must be
imposed to guarantee the cancellation of UV singularities [52].

The I2(✏) operator is defined by

I2(✏) = �
1

2
I1(✏)


I1(✏) +

�0

✏

�
+

N(✏)

N(2✏)


�0

2✏
+

�
cusp

1

8

�
I1(2✏) +H

(2)
(✏) , (2.12)

while the I1(✏) operators for bb̄H production in both the gg and the qq̄ channels are given
at leading colour by

I
b̄bq̄qH

1
(✏) = �Nc

N(✏)

2

✓
1

✏2
+

3

2✏

◆⇥
(�s23)

�✏
+ (�s14)

�✏
⇤
, (2.13)

I
b̄bggH

1
(✏) = �Nc

N(✏)

2

⇢✓
1

✏2
+

3

4✏
+

�0

4✏

◆⇥
(�s23)

�✏
+ (�s14)

�✏
⇤
+

✓
1

✏2
+

�0

2✏

◆
(�s34)

�✏

�
,

(2.14)
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where N(✏) = e
✏�E/�(1� ✏), s14 = s23 � s15 � s45 + p

2
5

and

H
(2)

b̄bq̄qH
(✏) =

1

16✏

⇢
4�

q

1
� �

cusp

1
�
q

0
+

⇡
2

4
�0�

cusp

0
CF

�
, (2.15)

H
(2)

b̄bggH
(✏) =

1

16✏

⇢
2 (�

q

1
+ �

g

1
)�

1

2
�
cusp

1
(�

q

0
+ �

g

0
) +

⇡
2

8
�0�

cusp

0
(CF + CA)

�
. (2.16)

The � function coefficients and anomalous dimensions are given in Appendix A. The finite
remainder of the L-loop amplitude is then obtained by subtracting the poles P

(L) (which
include both the ultraviolet and infrared singularities) from the unrenormalised amplitude
A

(L) and setting ✏ to 0,

F
(L)

= lim
✏!0

h
A

(L)
� P

(L)
A

(0)

i
. (2.17)

2.1 Tree-level Amplitudes

The tree-level amplitudes with respect to which we normalise the loop amplitudes can be
obtained using the BCFW recursion relations [84, 85] within the spinor helicity formalism.
In the b̄bggH case, we choose to shift the momenta of gluons 3 and 4, while in the b̄bq̄qH

case, we choose particles 1 and 4 to avoid shifting the momenta of adjacent quarks of the
same flavour. Moreover, we ensure that the shifted brackets [̂ii, |ĵ] do not belong to particles
of helicities i�, j+. These choices are necessary for the validity of the recursion relations as
they prevent the shifted amplitude from having poles at infinity.

For the b̄bggH channel we obtain the following non-vanishing tree-level partial ampli-
tudes,

A
(0)

(1
+

b̄
, 2

+

b
, 3

+

g , 4
+

g , 5H) =
s5

h23ih34ih41i
, (2.18)

A
(0)

(1
+

b̄
, 2

+

b
, 3

�
g , 4

�
g , 5H) = �

[12]
2

[23][34][41]
, (2.19)

A
(0)

(1
+

b̄
, 2

+

b
, 3

+

g , 4
�
g , 5H) =

h24ih4|5|1]
2

s234h23ih34ih2|5|1]
�

s5[13]
3

s134[14][34]h2|5|1]
, (2.20)

The b̄, b quarks need to have the same helicity as that is the only way they can couple to
the Higgs boson. For the b̄bggH channel the “all-plus” and MHV configurations vanish, and
we are left with

A
(0)

(1
+

b̄
, 2

+

b
, 3

+

q̄ , 4
�
q , 5H) =

h4|5|1]
2

s234h34ih2|5|1]
+

s5[31]
2

s134[34]h2|5|1]
. (2.21)

In both cases, due to the colour decomposition of the full amplitudes given by Eq. (2.8),
the A(0)

(1
+
, 2

+
, 3

�
, 4

+
, 5H) partial amplitude is related to A

(0)
(1

+
, 2

+
, 3

+
, 4

�
, 5H) by swap-

ping the particles 1 $ 2, 3 $ 4 [SZ: (and changing the overall sign for the subprocess

b̄bggH)]. The remaining non-vanishing helicity configurations can be obtained by parity
transformations, that is by swapping the brackets h i $ [ ].
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complete set of leading colour two-loop
helicity amplitudes (incl nf terms)

dictions across the entire kinematic region [74–78]. A first step towards a massive version
of the five-flavour scheme (5FMS) has been devised to naturally connect the 4FS and 5FS
approaches [79, 80].

In this work we compute the two-loop QCD corrections to the gg ! bb̄H, qq̄/q̄q ! bb̄H,
bb̄/b̄b ! bb̄H, bb ! bbH and b̄b̄ ! b̄b̄H reactions in the 5FS. These two-loop amplitudes
enter the computation of pp(bb̄) ! H at N4LO, pp ! b(b̄)H at N3LO when one b-jet
is tagged, and pp ! bb̄H at NNLO when two b-jets are required in the final state. We
note that beyond NLO, for the computation with massless bottom quarks, a flavoured
jet algorithm [81] would have to be employed when identifying the b-jets, since the use of
conventional kT or anti-kT jet algorithms would render the fixed order computation infrared
unsafe. We further remark that the two-loop amplitudes for bb̄H production derived in this
work can also be used in the computation of Higgs decaying into a bottom-quark pair in
5FS, by crossing initial partons to the final state. Specifically, they will contribute in the
N4LO H ! bb̄, N3LO H ! bb̄j and NNLO H ! bb̄jj computations. In addition, by
crossing the bb̄ pair to the initial state and the gg/qq̄ pair to the final state we obtain the
contribution of the bottom-quark initiated channel to H + 2j production (bb̄ ! Hjj).

We present analytic results for the finite remainders after ultraviolet (UV) and infrared
(IR) poles have been subtracted. This is possible using a basis of independent special
functions recently identified in the context of Wbb̄ production [49]. We obtain numerical
results valid across the full phase space by applying the generalised series expansion ap-
proach [46, 82, 83] to the differential equations satisfied by the special functions appearing
in the finite remainders.

This paper is organised as follows. We begin by describing the structure of the bb̄H

amplitudes at leading colour in Section 2, followed by the discussion of methodology used
in deriving the analytic expression of the amplitudes in Section 3. We present benchmark
numerical evaluations together with evaluations on a physical phase-space slice in Section 6.
Finally we draw our conclusions in Section 7. [SZ: update this when the draft is

complete]

2 Structure of bb̄H Amplitudes at Leading Colour

We compute the two-loop QCD corrections in the leading colour approximation for the
following subprocesses

0 ! b̄(p1) + b(p2) + g(p3) + g(p4) +H(p5) , (2.1)
0 ! b̄(p1) + b(p2) + q̄(p3) + q(p4) +H(p5) , (2.2)
0 ! b̄(p1) + b(p2) + b̄(p3) + b(p4) +H(p5) , (2.3)

where all momenta are taken as outgoing,

5X

i=1

pi = 0 . (2.4)
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finite remainder basis functions

f (k)
i ! h(k)

i
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Figure 3: ... for the channels defined in Eq. (6.3).

s12 =
49

576
, s23 = �

15337

2048
, s34 =

63

4
, s45 = �

288491

38912
,

s15 =
455

64
, p

2

5 = 7, tr5 = i
49
p
50998583

1400832
(6.2)
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b̄bggH helicity ✏
�4

✏
�3

✏
�2

✏
�1

✏
0

Â
(2),1

++++ 4.5 �11.9857 +

9.42478i

1.38005�

40.6951i

37.5629 +

74.9878i

�160.364�

16.4633i

+++� 4.5 �11.9857 +

9.42478i

11.3257�

12.3672i

�26.8161 +

82.1522i

�142.327�

160.925i

++�+ 4.5 �11.9857 +

9.42478i

2.69154�

41.4561i

35.9446 +

68.3748i

�132.233�

11.7912i

++�� 4.5 �11.9857 +

9.42478i

21.8803�

71.2779i

85.0932 +

67.5004i

�293.742 +

11.2118i

Â
(2),nf ++++ 0 0.5 �0.177826+

1.04486i

�0.769158�

3.80277i

�5.39544 +

7.05528i

+++� 0 0.5 �0.192856+

1.0472i

1.4513 +

2.42621i

�3.57357 +

44.5555i

++�+ 0 0.5 �0.192856+

1.0472i

�0.467396�

4.03798i

�3.83854 +

2.69906i

++�� 0 0.5 0.987798 +

0.631652i

3.957�

5.16329i

33.7155�

38.6759i

Â
(2),n

2
f ++++ 0 0 0 0.00334�

0.000519914i

0.00266436 +

0.0210796i

+++� 0 0 0 0 0

+ +�+ 0 0 0 0 0

+ +�� 0 0 0 0.262368�

0.0923434i

0.532893 +

1.66516i

Table 3

We parameterise the momenta for the scattering processes (2.1) as

p1 =
y1

p
s

2
(1 , 1 , 0 , 0) ,

p2 =
y2

p
s

2
(1 , cos ✓ ,� sin ✓ sin� ,� sin ✓ cos�) ,

p3 =

p
s

2
(�1 , 0 , 0 ,�1) ,

p4 =

p
s

2
(�1 , 0 , 0 , 1) ,

(6.11)

while p5 is fixed by momentum conservation, p5 = �p1 � p2 � p3 � p4. Requiring that
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b̄bq̄qH helicity ✏
�4

✏
�3

✏
�2

✏
�1

✏
0

Â
(2),1

+++� 2 �6.81012 25.5694 +

17.9036i

�60.3404�

6.4188i

48.2991�

125.381i

++�+ 2 �6.81012 22.4573 +

14.9001i

�60.7797 +

3.42105i

96.4449�

180.941i

Â
(2),nf +++� 0 1.66667 �4.60863 +

4.18879i

13.2979�

5.52188i

4.96804 +

95.7191i

++�+ 0 1.66667 �4.60863 +

4.18879i

11.2232�

7.52422i

�1.06892 +

93.2862i

Â
(2),n

2
f +++� 0 0 0.444444 �0.969043+

2.79253i

�6.91677�

6.08868i

++�+ 0 0 0.444444 �0.969043+

2.79253i

�6.91677�

6.08868i

Table 4

channel Re H
(2),1

Re H
(2),nf Re H

(2),n
2
f

gg 156680.6267 �41215.80337 405.9379563

qq̄ 0.09391314268 �0.02045942258 �0.004225713438

q̄q 0.3494872243 �0.08069122736 �0.004225713438

bb̄ 48640.80398 �26530.01855 2458.442153

b̄b �141130.5373 42183.03094 3711.445449

bb/b̄b̄ �53679.25708 1988.662899 894.7895467

Table 5

p
2
5
= m

2

H
gives the constraint

cos ✓ = 1 +
2

y1y2

✓
1� y1 � y2 �

m
2

H

s

◆
. (6.12)

We choose the following values for the parameters,

s = 1 , � =
1

10
, y1 =

3

5
, mH =

1

10
. (6.13)

The reality of the angle ✓ then restricts the free parameter y2 to the interval y2 2 [
39

100
,
39

40
].
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massive internal propagators have always 
challenged analytic methods 

A(1),1 A(1),Nl A(1),Nh

Figure 1: Sample Feynman diagrams corresponding to various internal flavour contribu-
tions at one loop as specified in Eq. (2.3). Red lines, black spiral lines and black lines
represent massless quarks, gluons and top quarks, respectively.

A(2),1 A(2),Nl A(2),Nh

A(2),N2
l A(2),NlNh A(2),N2

h

Figure 2: Sample Feynman diagrams corresponding to various internal flavour contribu-
tions at two loops as specified in Eq. (2.4). Red lines, black spiral lines and black lines
represent massless quarks, gluons and top quarks, respectively.

2 Leading colour t̄tgg amplitudes

We consider a scattering process involving a pair of top quarks and two gluons

0 ! t̄(p1) + t(p2) + g(p3) + g(p4),

where p
2
1 = p

2
2 = m

2
t and p

2
3 = p

3
4 = 0. The kinematic invariants for this process are the

top-quark mass mt, and the two Mandelstam variables

s = (p1 + p2)
2
, t = (p2 + p3)

2
. (2.1)

In this work we consider the leading colour contributions of the t̄tgg amplitude up to
two-loop level, where at two loops, only planar configurations arise. The colour decompo-
sition of the leading colour L-loop t̄tgg amplitude is given by

A
(L)(1t̄, 2t, 3g, 4g) = n

L
g
2
s


(T a3T

a4) ī1
i2

A
(L)(1t̄, 2t, 3g, 4g) + (3 $ 4)

�
, (2.2)

where n = m✏↵s/(4⇡), ↵s = g
2
s/(4⇡), m✏ = i

�
4⇡/m2

t

�✏
e
�✏�E , gs is the strong coupling

constant and (T a) j̄
i are the fundamental generators of SU(Nc).
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numerical solutions very successful 
even if computationally intensive

[Baernreuther, Czakon, Chen, Fiedler, Poncelet 
(2008-2018)]

analytic solutions for qq!tt and all 
non-elliptic sectors of gg!tt known

[Bonciani, Ferroglia, Gehrmann, Studerus, von 
Manteuffel, Di Vita, Laporta, Mastrolia, Primo, Schubert, 

Becchetti, Casconi, Lavacca (2009-2019)]

SB, Chaubey, Hartanto, Marzucca [2102.02516]



helicity amplitudes
include full top-quark decays efficiently

e.g. at one-loop [Melnikov, Schulze (2008)]

complete system. For the L-loop t̄tgg amplitude this is

A
(L)(1+t̄ , 2

+
t , 3

h3 , 4h4 ;n1, n2) = m
�h3h4

h1[n1ih2[n2i

 
hn1n2iA

(L),[1](1+t̄ , 2
+
t , 3

h3 , 4h4)

+
hn13ihn24i

h34i
A

(L),[2](1+t̄ , 2
+
t , 3

h3 , 4h4)

+
s34hn13ihn23i

h3|14|3i
A

(L),[3](1+t̄ , 2
+
t , 3

h3 , 4h4)

+
s34hn14ihn24i

h4|13|4i
A

(L),[4](1+t̄ , 2
+
t , 3

h3 , 4h4)

!
(3.5)

where � is a phase factor depending on the helicities of the gluons. There are a few things
to note about this expression:

1. The sub-amplitudes A
(L),[a] are defined to be dimensionless and free of the spinor

phases.

2. A
(L),[a] depends only on two variables.

3. The gluon phases for the ++ and +� configuration are taken to be

�++ =
[34]

h34i
, �+� =

h4|1|3]

h3|1|4]
.

4. The basis of spin structures has been chosen to prefer hn1n2i over hn14ihn23i. The
sub-amplitudes appear to be simpler in this basis.

The computation of the sub-amplitudes can then be obtained from four different eval-
uations of the full amplitude with a rational kinematic configuration with four choices of
the reference vectors. These evaluations can then be used to make a linear system which is
solved to find the sub-amplitudes A

(L),[a]. Explicitly,

A
(L)(3, 3) = m�h3h4

sh34i

h1[3ih2[3ih4|1|3]
A

(L),[4]
, (3.6)

A
(L)(4, 4) = �m�h3h4

sh34i

h1[4ih2[4ih3|1|4]
A

(L),[3]
, (3.7)

A
(L)(3, 4) = m�h3h4

h34i

h1[3ih2[4i
A

(L),[1]
, (3.8)

A
(L)(4, 3) = �m�h3h4

h34i

h1[4ih2[3i
(A(L),[1] +A

(L),[2]), (3.9)

where we have dropped the particle labels on the A functions for simplicity.

3.1 Generating a rational parametrisation of the kinematics

We start from a rational configuration with six massless particles generated via momentum
twistors [59, 63]. This configuration will depend on eight independent parameters. The
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One major issue is that the helicity for a massive particle is not conserved and so we must
introduce an arbitrary additional direction in order to define it. This additional extra
direction can increase the algebraic complexity of an analytic computation.

In this section we review one way in which massive spinors can be incorporated into the
spinor-helicity methods [58] and then describe how to define a set of gauge invariant, on-
shell sub-amplitudes that can be used to describe the full set of spin correlated narrow width
decays. These on-shell sub-amplitudes can be computed using a rational parametrisation of
the external kinematics. In our case, this rational paramtrisation was generated using the
momentum twistor formalism [59]. The spinor-helicity method applied to massive fermions
has been well studied and we refer the reader to Refs. [60–62] for further details and other
approaches.

The first step is to introduce an arbitrary direction n which can be used to define a
massless projection of the massive fermion momentum,

p
[,µ = p

µ
�

m
2

2p.n
n
µ
, (3.1)

where p
µ is the momentum of an on-shell massive fermion with p

2 = m
2. The momenta p

[

and n are both massless. The set of u and v spinors for the massive fermion can then be
constructed using the Weyl spinors for the massless momenta,

u+(p,m) =
(/p+m)|ni

hp[ni
, u�(p,m) =

(/p+m)|n]

[p[n]
, (3.2)

v�(p,m) =
(/p�m)|ni

hp[ni
, v+(p,m) =

(/p�m)|n]

[p[n]
. (3.3)

The fact that the helicity state depends on the choice of reference vector means that positive
and negative helicities are no longer independent as they are in the massless case:

u�(p,m) =
hp

[
ni

m

 
u+(p,m)

����
p[$n

!
. (3.4)

For a tt̄ pair this means that we only need to compute one helicity configuration with general
reference vectors, say ++, and we will obtain enough information for all four possible spin
configurations.

We can then organise amplitudes for the ++ configuration into a basis of spinor struc-
tures which parametrise the dependence on the two reference vectors n1 and n2. There
are four independent terms in this basis, matching up with the four configurations in the
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obtain rational parametrisation in 
terms of only 2 variables (via 
Momentum twistors, mt=1)

six particles are then used to form a configuration with specific choices for the reference
momenta. We label the six massless momenta as q1, . . . , q6 and the resulting tt̄ system as
p1, p2, p3, p4 where,

p1 = q1 + q2, p2 = q3 + q4, p3 = q5, p4 = q6, (3.10)

q1 · q2 = q3 · q4, hq2q5i = 0, [q2q5] = 0, hq4q5i = 0, [q4q5] = 0. (3.11)

The ordering of the momenta q1, . . . , q6 is important to find a simple rational solution
to the last four constraints. From the on-shell momenta p1, . . . , p4 it is straightforward
to generate rational spinors for p

[
1, p

[
2 using four different choices of reference vectors:

(n1, n2) = {(3, 3), (4, 4), (3, 4), (4, 3)}. The variables of the original six-point configuration,
i.e. those of the qi momenta, are changed so that we can use conventional Mandelstam
invariants,

s = (p3 + p4)
2 = 2p3 · p4, t = (p2 + p3)

2 = 2p2 · p3 +m
2
t . (3.12)

This procedure would also work for high multiplicity amplitudes though a careful choice
of variables in the parametrisation may be necessary to obtain manageable algebraic com-
plexity.

The final results for the sub-amplitudes in Eq. (3.5) will be expressed using kinematic
variables x and y defined by

�
s

m2
t

=
(1� x)2

x
,

t

m2
t

= y. (3.13)

This choice rationalises the square root,
q

s (s� 4m2
t )

that appears in the master integral and amplitude computations. For the t̄tgg amplitudes
that do not involve elliptic sectors, the rationalisation of such a square root allows us to
perform a computation within finite field arithmetic without the need to introduce addi-
tional variables. It also important to make a rational change of variables when solving the
differential equations of the master integrals.

3.2 Tree-level sub-amplitudes

Following the procedure above allows us to directly evaluate the relevant colour ordered
Feynman diagrams to obtain simple expressions at tree level:

A
(0),[1](1+t̄ , 2

+
t , 3

+
, 4+) = �

1

1� y
,

A
(0),[2](1+t̄ , 2

+
t , 3

+
, 4+) = A

(0),[3](1+t̄ , 2
+
t , 3

+
, 4+) = A

(0),[4](1+t̄ , 2
+
t , 3

+
, 4+) = 0, (3.14)

and

A
(0),[1](1+t̄ , 2

+
t , 3

+
, 4�) = A

(0),[3](1+t̄ , 2
+
t , 3

+
, 4�) =

(x� y)(1� xy)

(1� x)2(1� y)
,

A
(0),[2](1+t̄ , 2

+
t , 3

+
, 4�) = A

(0),[4](1+t̄ , 2
+
t , 3

+
, 4�) = 0. (3.15)

– 8 –



master integrals
top-box integral recently computed analytically in 

terms of iterated integrals over 3 elliptic curves

[Adams, Chaubey, 
Weinzierl (2018)]

g(p4)

t̄(p1)

t(p2)

g(p3) t
t

t

Figure 7: Feynman diagram contributing to A
(2),Nh that leads to the new master integral

topologies shown in Fig. 6. The solid lines denoted the top quark whereas spiral lines denote
the gluons. All external momenta are on-shell.

5.1 New master integrals

The new master integral topologies that appear in A
(2),Nh arise from the Feynman diagram

shown in Fig. 7. The integral family for this penta-triangle topology is given by

I⌫1⌫2⌫3⌫4⌫5⌫6⌫7⌫8⌫9 = e
2✏�E

�
m

2
t

�⌫�d
Z

d
d
k1

i⇡d/2

d
d
k2

i⇡d/2

D
�⌫8
8 D

�⌫9
9

D
⌫1
1 D

⌫2
2 D

⌫3
3 D

⌫4
4 D

⌫5
5 D

⌫6
6 D

⌫7
7

, (5.1)

where �E denotes the Euler-Mascheroni constant, ⌫ =
P9

j=1 ⌫j and d = 4� 2✏. The inverse
propagators Di are given by

D1 = �k
2
1, D2 = �(k1 � p4)

2
, D3 = �(k1 + p2 + p3)

2 +m
2
t ,

D4 = �(k1 + p3)
2
, D5 = �k

2
2 +m

2
t , D6 = �(k2 � p3)

2 +m
2
t ,

D7 = �(k1 + k2)
2 +m

2
t , D8 = �(k2 + p4)

2
, D9 = �(k2 + p1 + p4)

2
.

(5.2)

We choose a basis of master integrals for which the irreducible scalar products corresponding
to D8 and D9 are absent. Therefore we may label these master integrals by I⌫1⌫2⌫3⌫4⌫5⌫6⌫7 .
Using IBP identities, we obtain 22 master integrals, {Mi}

22
i=1 which are shown in Fig. 8.

We refer to this basis of master integrals as the pre-canonical basis, and they are given by

M1 = I000001100, M2 = I010001100, M3 = I010002100,

M4 = I001010100, M5 = I002010100, M6 = I102020000,

M7 = I001001100, M8 = I010011100, M9 = I011010100,

M10 = I011001100, M11 = I011002100, M12 = I101001200,

M13 = I102001200, M14 = I001011100, M15 = I011011100,

M16 = I011021100, M17 = I011012100, M18 = I011011200,

M19 = I111001100, M20 = I111001200, M21 = I101011100,

M22 = I111011100. (5.3)
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Figure 8: Master integral basis for the pentatriangle topology shown in Fig. 7. Black-solid
lines represent massive particles, red-dashed lines represent massless particles.

A set of 15 integrals were identified as master integrals from the topbox family and were
already computed in [18]. They are

M1 = I1001000, M2 = I0011100, M3 = I0021100, M4 = I1001001,

M5 = I2001001, M7 = I0101001, M8 = I1011100, M9 = I1001101,

M10 = I0011101, M11 = I0021101, M14 = I1101001, M15 = I1011101,

M16 = I2011101, M17 = I1021101, M18 = I1012101, (5.4)

where I⌫1⌫2⌫3⌫4⌫5⌫6⌫7 are the precanonical master integrals defined in Eq. (8) of [18]. A
second set of 5 master integrals is available from [82], and they are identified as

M6 = T10, M12 = T21, M13 = T22, M19 = T31, M20 = T32, (5.5)
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(a) The sunrise topology (b) The topbox topology (c) The bubblebox topology

Figure 9: Topologies in the topbox family that are associated with the elliptic curves
E

(a), E(b) and E
(c). Black-solid lines represent massive particles, red-dashed lines represent

massless particles.

and can be used to define the modulus k2 and the complementary modulus k̄2 of the elliptic
curve E as

k
2 =

Z1

Z3
, k̄

2 = 1� k
2 =

Z2

Z3
. (5.23)

Then we can choose the two elliptic periods  i associated to the elliptic curve E as

 1 =
4K (k)

Z

1
2
3

,  2 =
4iK

�
k̄
�

Z

1
2
3

, (5.24)

where K denotes the complete elliptic integral of the first kind

K(�) =

Z 1

0

dtp
(1� t2)(1� �t2)

. (5.25)

In our results, the dependence of iterated integrals on elliptic curves enters through
the appearance of elliptic periods in the integration kernels Eq. (5.11). Let us now take a
closer look at the different elliptic topologies and the corresponding elliptic curves relevant
for this publication. The topbox diagram has three elliptic sub-sectors corresponding to
three different elliptic curves. They can be obtained from the maximal cuts in the Baikov
representation [91]. We identify the three different elliptic curves by the labels a, b, and c

according to the diagrams depicted in Fig. 9.
The elliptic curve E

(a) is associated to the sunrise topology (Fig. 9a) and is probably
the most well-known of the three. The corresponding zi in Eq. (5.19) are given as

z
(a)
1 =

t� 4m2

µ2
, z

(a)
2 =

�m
2
� 2m

p
t

µ2
, z

(a)
3 =

�m
2 + 2m

p
t

µ2
, z

(a)
4 =

t

µ2
. (5.26)

Iterated integrals involving only this topology can be cast in terms of iterated integrals of
modular forms, and are well-suited for numerical evaluation [19, 23, 24, 92–95].

The elliptic curve E
(b) is associated to the topbox sector itself (Fig. 9b) and the corre-

sponding zi are given by

z
(b)
1 =

t� 4m2

µ2
, z

(b)
2 =

�m
2
� 2m

q
t+ (m2�t)2

s

µ2
, z

(b)
3 =

�m
2 + 2m

q
t+ (m2�t)2

s

µ2
,

z
(b)
4 =

t

µ2
. (5.27)
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one missing integral in the amplitude

derived canonical form DE
obtained iterated integral 
form and boundary constants



analytic finite remainders
direct reconstruction of 

finite remainders

additional function relations necessary to 
cancel IR poles - beyond shuffle relations   

• test evaluations match with previous numerical results
• analytic continuation of iterated integrals needs further investigation

6.1 Functional Relations Among Iterated Integrals

In the previous sections, we have presented how we compute the planar master integrals
contributing to the gg ! tt̄ scattering process in terms of MPLs and iterated integrals
over elliptic curves. While this allows us to evaluate the tt̄gg helicity amplitudes, we find
that there are potential redundancies in the functional basis of iterated integrals that might
make the expression appear complex. Indeed, after integrating the differential equation, we
found that the simple pole vanished numerically as expected but this cancellation was not
reflected in the analytic expression. In order to achieve an explicit cancellation of all pole
terms, some functional relations among the iterated integrals had to be applied. In this
section we comment on functional relations among iterated integrals and the cancellation
of the ✏ pole. For this purpose, we adopt again the notation for the integration kernels
introduced in [18].

The functional relations we will discuss in this section are related to the appearance of
derivatives of elliptic periods in the integration kernels. Take for example the kernel

a
(b)
3,3 =

 
(b)
1 x

⇡(x� 1)2
dy �

(@y 
(b)
1 )x(y � 1)2

�
x
2
y + 3x2 � 6xy � 2x+ y + 3

�

⇡(x� 1)3(x+ 1) (3x2 � 2xy � 4x+ 3)
dx (6.1)

+
(@y 

(b)
1 )x(y � 1)

⇡(x� 1)2
dy �

 
(b)
1 (y � 1)

�
3x4 � x

3
y + x

3
� 6x2y � xy + x+ 3

�

⇡(x� 1)3(x+ 1) (3x2 � 2xy � 4x+ 3)
dx

=

 
(@x 

(b)
1 )x(y � 1)

⇡(x� 1)2
�
 
(b)
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We see that the integration kernel a(b)3,3 corresponds to a total derivative. Because the
primitive of a(b)3,3 vanishes at the lower integration boundary, we have
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monomials monos. with rels.

amplitude 12025 11791

finite remainder 3586 3158
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outlook
• techniques for multi-scale two-loop amplitudes reaching maturity
• modular arithmetic has played a key role in reducing complexity 
• fast and reliable analytic expressions for many processes
• looking forward to phenomenological applications

process known desired

pp æ 2 jets
NNLOQCD

NLOQCD + NLOEW

pp æ 3 jets NLOQCD + NLOEW NNLOQCD

Table I.2: Precision wish list: jet final states.

The cross section for tt̄H has been measured with a data sample of 80 fb≠1, with a
total uncertainty on the order of 20%, equally divided between statistical and sys-
tematic errors [476]. Again the statistical error will shrink to the order of 2–3% for
3000 fb≠1, leaving a systematics-dominated measurement. Given that this calcula-
tion is currently known only at NLOQCD, with a corresponding scale uncertainty of
the order of 10–15%, this warrants a calculation of the process to NNLOQCD.

tH: LH17 status: NLOQCD corrections to tH associated production known [477,478].

bb̄H: (including H production in bottom quark fusion treated in 5FS)
LH17 status: NNLOQCD predictions in bottom quark fusion in the 5FS known for a
long time, inclusively [479] and later di�erentially [480,481]; resummed calculation at
NNLO + NNLL available [482]; three-loop Hbb̄ form factor known [483]; N3LOQCD
in threshold approximation [484,485] calculated;
NLOQCD corrections in the 4FS known since long ago [486,487]; NLOQCD matched
to parton shower, also comparing with 5FS [488]; various methods proposed to
combine 4FS and 5FS predictions [489–493]; NLOEW corrections calculated [494].
More recently, the complete inclusive N3LOQCD calculation in bottom quark fu-
sion, treating the bottom quark as massless while retaining a non-vanishing Yukawa
coupling to the H, was presented in Ref. [495]. A reduced dependence on renormal-
isation and factorisation scales and a convergence of the series is found for judicious
scale choices. Compared to the cross section obtained from the so-called Santander-
matching [489] of 4FS and 5FS results, a slightly higher, though consistent cross
section is predicted.
Based upon these results in the 5FS a resummed calculation up to NNNLO + N3LL
was presented in Ref. [496], and N(1,1)LOQCD¢QED as well as NNLOQED predictions
were derived in Ref. [497].
The bb̄H final state has been studied at NLOQCD (including the formally NNLOHTL
y2

t contributions) using the 4FS [498].

1.5 Jet final states
An overview of the status of jet final states is given in Table I.2.

j+X: LH17 status: Di�erential NNLOQCD corrections calculated in the NNLOJET frame-
work [236] with a detailed study of scale choices performed in Ref. [499].
Single-jet inclusive rates with exact colour at O(–4

s) were recently completed in the
sector-improved residue subtraction formalism [261]. This full calculation confirmed
that the approximation applied in the previous one, i.e., leading-colour approxima-
tion in the case of channels involving quarks and exact calculation in colour only in
the pure-gluon channel, is perfectly justified for phenomenological applications.
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a lot of progress since LH SMWG 2019! [2003.01700]
process known desired

pp æ H

N3LOHTL (incl.)

N(1,1)LO(HTL)
QCD¢EW

NNLOHTL ¢ NLOQCD

N3LOHTL (partial results available)

NNLOQCD

pp æ H + j
NNLOHTL

NLOQCD
NNLOHTL ¢ NLOQCD + NLOEW

pp æ H + 2j

NLOHTL ¢ LOQCD

N3LO(VBFú)
QCD (incl.)

NNLO(VBFú)
QCD

NLO(VBF)
EW

NNLOHTL ¢ NLOQCD + NLOEW

NNLO(VBF)
QCD + NLO(VBF)

EW

pp æ H + 3j
NLOHTL

NLO(VBF)
QCD

NLOQCD + NLOEW

pp æ H + V NNLOQCD + NLOEW NLO(t,b)
ggæHZ

pp æ HH N3LOHTL ¢ NLOQCD NLOEW

pp æ H + tt̄ NLOQCD + NLOEW NNLOQCD

pp æ H + t/t̄ NLOQCD NLOQCD + NLOEW

Table I.1: Precision wish list: Higgs boson final states. NxLO(VBFú)
QCD means a calculation using

the structure function approximation.

at NNLOQCD is beyond the scope of current theoretical methods.
Decays in the context of electroweak corrections are usually much more complicated. Full

o�-shell e�ects at NLO are expected to be small, but higher-order corrections within factorisable
contributions to the decay can be important. However, with the great progress of automated
tools, NLO calculations not only in QCD, but also in electroweak theory for 2 æ 6 processes
and beyond have become feasible.

1.4 Higgs boson associated processes
An overview of the status of Higgs boson associated processes is given in Table I.1.

H: LH17 status: NNLOHTL results known for almost two decades [262, 263, 367–369];
supplemented by an expansion in 1/mn

t [370], and matched to a calculation in the
high energy limit [371]; first steps towards di�erential results at N3LOHTL pre-
sented in Ref. [372], and results beyond threshold approximation in Refs. [85–87];
N(1,1)LO(HTL)

QCD¢EW corrections at order ––2
s calculated in the soft gluon approxima-

tion [373,374]; comprehensive phenomenological study presented in [375], and avail-
able in the program iHixs [87]; NNLO + PS computations [376, 377] extended to
include finite top and bottom mass corrections at NLO [378].
The rapidity spectrum for Higgs production in gluon fusion has been calcuated to
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process known desired

pp æ V

N3LO(zæ0)
QCD (incl.)

N3LOQCD (incl., “ú)

NNLOQCD

NLOEW

N3LOQCD + N2LOEW + N(1,1)LOQCD¢EW

pp æ V V Õ NNLOQCD + NLOEW

+ NLOQCD (gg channel)
NLOQCD (gg channel, w/ massive loops)

pp æ V + j NNLOQCD + NLOEW hadronic decays

pp æ V + 2j
NLOQCD + NLOEW

NLOEW
NNLOQCD

pp æ V + bb̄ NLOQCD NNLOQCD + NLOEW

pp æ V V Õ + 1j
NLOQCD

NLOEW (w/o decays)
NLOQCD + NLOEW

pp æ V V Õ + 2j NLOQCD NLOQCD + NLOEW

pp æ W +W + + 2j NLOQCD + NLOEW

pp æ W +Z + 2j NLOQCD + NLOEW

pp æ V V ÕV ÕÕ NLOQCD

NLOEW (w/o decays)
NLOQCD + NLOEW

pp æ W ±W +W ≠ NLOQCD + NLOEW

pp æ ““ NNLOQCD + NLOEW

pp æ “ + j NNLOQCD + NLOEW

pp æ ““ + j
NLOQCD

NLOEW
NNLOQCD + NLOEW

pp æ “““ NNLOQCD

Table I.3: Precision wish list: vector boson final states. V = W, Z and V Õ, V ÕÕ = W, Z, “. Full
leptonic decays are understood if not stated otherwise.

as well as the fully di�erential N3LOQCD computation for Z- and W-boson exchange
is an important step for phenomenological studies.
Very recently, the total cross section for the qq̄ channel at N(1,1)LOQCD¢EW was
computed for on-shell Z bosons [514]. Corrections at this order, but considering the
photonic part of the EW corrections only, i.e., N(1,1)LOQCD¢QED, were completed
for the on-shell production of the Z both for the inclusive cross section [515], and
di�erentially using the nested soft-collinear subtraction formalism [516].
The inclusive production cross section for W and Z bosons has been measured
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process known desired

pp æ tt̄

NNLOQCD + NLOEW

NLOQCD (w/ decays, o�-shell e�ects)

NLOEW (w/ decays, o�-shell e�ects)

NNLOQCD (w/ decays)

pp æ tt̄ + j
NLOQCD (w/ decays)

NLOEW
NNLOQCD + NLOEW (w/ decays)

pp æ tt̄ + 2j NLOQCD (w/ decays) NLOQCD + NLOEW (w/ decays)

pp æ tt̄ + Z NLOQCD + NLOEW (w/ decays) NNLOQCD + NLOEW (w/ decays)

pp æ tt̄ + W
NLOQCD

NLOEW
NNLOQCD + NLOEW (w/ decays)

pp æ t/t̄ NNLOQCD*(w/ decays) NNLOQCD + NLOEW (w/ decays)

Table I.4: Precision wish list: top quark final states. NNLOQCD
ú means a calculation using the

structure function approximation.

are available, the NNLOQCD calculation may be considered in reach in the nearer
future.

“““: LH17 status: NLOQCD corrections calculated in Ref. [612] and later in MCFM [634].
Very recently, as the first NNLOQCD calculation for a 2 æ 3 process in hadronic col-
lisions, three-photon production has been computed in the sector-improved residue
subtraction formalism [5]. The involved two-loop amplitudes apply a leading-colour
approximation, but the impact of the neglected contributions is estimated to be
phenomenologically irrelevant.

1.7 Top quark associated processes
An overview of the status of top quark associated processes is given in Table I.4

tt̄: LH17 status: Fully di�erential NNLOQCD computed for on-shell top-quark pair
production [255, 256, 635], also available as fastNLO tables [636]; polarized two-
loop amplitudes known [637]; combination of NNLOQCD and NLOEW corrections
performed [638]; also multi-jet merged predictions with NLOEW corrections avail-
able [639]; resummation e�ects up to NNLL computed [640–645]; top quark decays
known at NNLOQCD [257, 305]; W +W ≠bb̄ production with full o�-shell e�ects cal-
culated at NLOQCD [646–649] including leptonic W decays, and in the lepton plus
jets channel [650]; full NLOEW corrections for leptonic final state available [651];
calculations with massive bottom quarks available at NLOQCD [652,653];
NLOQCD predictions in NWA matched to parton shower [654], and multi-jet merged
for up to 2 jets in SHERPA [655] and HERWIG 7.1 [656]; W +W ≠bb̄ at NLOQCD first
matched to a parton shower in the POWHEG framework [657]; improved resonance
treatment, called “resonance aware matching”, done in POWHEG-BOX-RES [658,659];
alternative approach in the POWHEG NLO + PS framework presented in Ref. [660];
Various aspects of the definition and extraction of the top quark mass studied in
Refs. [661–669].
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Czakon et al. [2106.05331]

Chawdhry et al. [2105.05331]Chawdhry et al. [1911.00479]
Kallweit et al. [2010.04681]

process known desired

pp æ V

N3LO(zæ0)
QCD (incl.)

N3LOQCD (incl., “ú)

NNLOQCD

NLOEW

N3LOQCD + N2LOEW + N(1,1)LOQCD¢EW

pp æ V V Õ NNLOQCD + NLOEW

+ NLOQCD (gg channel)
NLOQCD (gg channel, w/ massive loops)

pp æ V + j NNLOQCD + NLOEW hadronic decays

pp æ V + 2j
NLOQCD + NLOEW

NLOEW
NNLOQCD

pp æ V + bb̄ NLOQCD NNLOQCD + NLOEW

pp æ V V Õ + 1j
NLOQCD

NLOEW (w/o decays)
NLOQCD + NLOEW

pp æ V V Õ + 2j NLOQCD NLOQCD + NLOEW

pp æ W +W + + 2j NLOQCD + NLOEW

pp æ W +Z + 2j NLOQCD + NLOEW

pp æ V V ÕV ÕÕ NLOQCD

NLOEW (w/o decays)
NLOQCD + NLOEW

pp æ W ±W +W ≠ NLOQCD + NLOEW

pp æ ““ NNLOQCD + NLOEW

pp æ “ + j NNLOQCD + NLOEW

pp æ ““ + j
NLOQCD

NLOEW
NNLOQCD + NLOEW

pp æ “““ NNLOQCD

Table I.3: Precision wish list: vector boson final states. V = W, Z and V Õ, V ÕÕ = W, Z, “. Full
leptonic decays are understood if not stated otherwise.

as well as the fully di�erential N3LOQCD computation for Z- and W-boson exchange
is an important step for phenomenological studies.
Very recently, the total cross section for the qq̄ channel at N(1,1)LOQCD¢EW was
computed for on-shell Z bosons [514]. Corrections at this order, but considering the
photonic part of the EW corrections only, i.e., N(1,1)LOQCD¢QED, were completed
for the on-shell production of the Z both for the inclusive cross section [515], and
di�erentially using the nested soft-collinear subtraction formalism [516].
The inclusive production cross section for W and Z bosons has been measured
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growing complexity

loops

legs

complexity

analytic complexity
e.g. pp→tt

algebraic complexity
e.g. six-gluon scattering

loops 1 2 3 4 5
diagrams 5 30 450 50, 000 1.5⇥ 106

year 1973 1974 1980/1993 1997/2005 2016

Diagrams contributiing to QCD � function up to 5 loops

more scales = more complicated



algebraic algorithms for multi-loop amplitudes

Integrand reduction via 
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[Mastrolia, Ossola (2011)][SB, Frellesvig, Zhang (2012)][Zhang 
(2012)] [Mastrolia, Mirabella, Ossola, Peraro (2012)]

Unitarity compatible IBPs,
Maximal unitarity, 

Numerical unitarity

[Gluza, Kadja, Kosower (2010)][Kosower, Larsen (2011)]
[Ita (2015)][Larsen, Zhang (2015)][ Abreu, Dormans, 

Febres-Cordero, Ita, Jaquier, Page, Zeng, Sotnikov (2017-]
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linear relations amongst Feynman 
integrals (in the same ‘family’ - i.e. 
different powers on propagators)

integration-by-parts identities

on-shell trees*→MI

on-shell trees*→integrand basis

*trees in higher dimensions
amplitudes in dim. reg.

new efficient methods 
using computational 
algebraic geometry
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some remarks on master integrals

‘UT’
universal transcendental weight

‘dlog’

local integrands

• IBPs valid in d=4-2ε*

• make expansion around d=4 easy
• expose divergence structure
• simple differential equations [Henn]
• often simpler amplitude representations

quasi-finite
[Panzer, von Manteuffel, 

Schabinger]

* IBPs in d=4 are possible but require careful treatment

Z
dx
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d(log(x+ c))

1 + ✏ log(x) + ✏2 log2(x)

1 + ✏(1 + log(x)) + ✏2 log2(x)
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i

st
h1a2b3c4di[1ȧ2ḃ3ċ4ḋ]
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the choice of master integrals makes a huge difference to 
the subsequent evaluation (numerical or analytic)

b1 =
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b4 =
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b6 =

(4�2✏)

b7 =

(4�2✏)

b8 =

(6�2✏)

Figure 3. A minimal quasi-finite basis for the planar massless double box integral family.

as products of lower-loop topologies will typically lead to di↵erent results. In the present

example, we treat the integral b8 with the double bubble topology as a two-loop integral.

Considering each of its one-loop topologies separately would allow us to write it as the

square of the (quasi-finite) one-loop bubble integral in 4 � 2✏ dimensions without any

dots at all. Finally, we remind the reader that, by virtue of the principle of analytical

continuation, any quasi-finite linear combination equal to the original integral discovered

in Euclidean kinematics can be reinterpreted as a relation between Feynman integrals in

physical kinematics unambiguously using the +i0 prescription.

4 Outlook

In this paper, we showed that one can express a multi-loop Euclidean Feynman integral

in terms of a basis of quasi-finite Feynman integrals. Quasi-finite Feynman integrals, in

the limit ✏ ! 0, possess a convergent Feynman parameter representation except for a

possible overall 1/✏ divergence encapsulated in a Gamma function prefactor. These basis

integrals are constructed for the original topology and its subtopologies by allowing for

higher spacetime dimensions and for higher powers of the propagators (dots). Our new

approach is guided by a regularization procedure [13] introduced by the second author

but, by employing integration by parts reductions, it overcomes practical limitations of the

original method caused by runaway expression swell. Our strategy, which we have dubbed

the minimal dimension shifts and dots method, is both e�cient and straightforward to

automate, and its implementation into the public Reduze 2 [25] program is work in progress.

Our approach to singularity resolution can be viewed as an alternative to sector de-

composition. Crucially, in contrast to sector decomposition, our method cannot introduce

spurious structures at an intermediate stage of a Feynman integral evaluation because one

never needs to split up the Feynman parameter representation of a quasi-finite integral.

In particular, if the integral under consideration happens to be linearly reducible, one can
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