Looking for strange particles in ALICE

Despina Hatzifotiadou
 INFN Bologna

CERN-Fermilab Hadron Collider Physics Summer School
September 2021

ALICE : A Large Ion Collider Experiment

Collider dfl'Large Aadirons'

Design Energy: 14 TeV (pp) 1150 TeV (PbPb)

Heavy Ion Collisons at Relativistic Energies

The heavy-ion beams travel at 99.9999\% of the speed of light.
The two ions look flat as pancakes due to relativity (Lorentz contraction)

The two ions collide and smash through each other. Energy is transforme d into mass => new quarks and gluons

Protons and neutrons "melt" under high temperature and density; quarks and gluons exist in a deconfined state (Quark Gluon Plasma) for 10^{-23} s

As the fireball cools down and becomes less dense quarks and gluons hadronize

Quark Gluon Plasma

 Matter in the Universe up to microseconds after the Big Bang
What are strange particles ?

meson

ds, ds
hadrons (baryons / mesons) which contain at least one strange (s) quark
baryon

uds

Quark Confinement

Quarks can not exist free in nature

They can only exist bound inside hadrons

Baryons qqq and Antibaryons $\bar{q} \bar{q} \bar{q}$

Baryons are fermionic hadrons.
These are a few of the many types of baryons.

Symbol	Name	Quark content	Electric charge	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Spin
p	proton	uud	1	0.938	1/2
$\overline{\mathbf{p}}$	antiproton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω^{-}	04.09 .22021	SSS	-1	${ }^{\text {D }} 1.672$	3/2

Symbol	Name	Quark content	Electric charge	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Spin
π^{+}	pion	$\mathbf{u \overline { d }}$	+1	0.140	0
\mathbf{K}^{-}	kaon	$\mathbf{s u}$	-1	0.494	0
ρ^{+}	rho	$\mathbf{u \overline { d }}$	+1	0.776	1
$\mathrm{~B}^{0}$	B-zero Stranale \mathbf{c}	$\mathbf{d} \overline{\mathbf{b}}$	0	5.279	0

We will be looking for neutral strange particles, which travel some distance (mm or cm) from the point of production (collision point) before they decay into two oppositely charged particles

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{s}}^{0} \rightarrow \pi^{+} \pi^{-} & \begin{array}{l}
\mathrm{T}=0.89 \times 10^{-10} \mathrm{~s} \\
\mathrm{cT}=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1} \times 8.9 \times 10^{-11} \mathrm{~s} \\
2.67 \mathrm{~cm} \text { from the point of interaction }
\end{array} \\
& \begin{array}{l}
\mathrm{T}=2.6 \times 10^{-10} \mathrm{~s}
\end{array} \\
\Lambda \rightarrow & \begin{array}{l}
\mathrm{cT}=3 \times 10^{-10} \mathrm{~cm} \mathrm{~s} \\
\\
7.2 \mathrm{~cm} \times 2.6 \times 10^{-10} \mathrm{~s}
\end{array} \\
\pi^{-p} \mathrm{p} \text { distance from the point of interaction }
\end{array}
$$

Weak decays : strangeness is not conserved

How do we find V0s?

We look for two opposite tracks, having the same origin, which is not the interaction (collision) point

How do we find V0s?

We look for two opposite tracks, having the same origin, which is not the interaction (collision) point

How do we identify each V0?

$$
\mathrm{K}_{\mathrm{s}}^{0} \rightarrow \pi^{+} \pi^{-}
$$

$$
\mathbf{K}^{0}
$$

$$
\pi^{+}
$$

> .

V0 decay :
a neutral particle (no track) gives suddenly two tracks
Identify V0s from the decay topology
$\mathrm{K}^{0} \rightarrow \pi^{+}+\pi^{-}$

$\Lambda \rightarrow \pi^{-} \mathrm{p}^{+}$

anti $\wedge \rightarrow \mathrm{p}^{-} \square^{+}$
$P=Q \cdot B \cdot R$
P momentum Q electric charge B magnetic field R radius of curvature

$$
0
$$

How do we identify each V0?

Calculate the (invariant) mass
Energy conservation
Momentum conservation
$\mathrm{E}=\mathrm{E}_{1}+\mathrm{E}_{2}$
Total energy
$\mathbf{p}=\mathbf{p}_{1}+\mathbf{p}_{2}$
$E^{2}=p^{2} c^{2}+m^{2} c^{4}$
$\mathrm{c}=1$

$$
\mathrm{E}^{2}=\mathrm{p}^{2}+\mathrm{m}^{2}
$$

$E=E_{1}+E_{2} \quad E_{1}{ }^{2}=p_{1}{ }^{2}+m_{1}{ }^{2} \quad E_{2}{ }^{2}=p_{2}{ }^{2}+m_{2}{ }^{2}$
$E^{2}=p^{2}+m^{2} \quad m^{2}=E^{2}-p^{2}=\left(E_{1}+E_{2}\right)^{2}-\left(p_{1}+p_{2}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 E_{1} E_{2}-2 p_{1} \cdot p_{2}$
Calculate the mass of the initial particle from the values of the mass and the momentum of the final particles

Particle Identification (done by a number of PID detectors)
Radius of curvature of the particle tracks due to magnetic field

$P=Q \cdot B \cdot R$ (P momentum, Q electric charge, R radius of curvature, B magnetic field)

$1^{\text {st }}$ part of the measurement

Visual analysis of a small sample of 15 events from proton-proton collisions:
find V0s, identify and classify them ($\mathrm{K}_{\mathrm{s}}, \Lambda$, anti \wedge) from the decay pattern and calculation of the invariant mass

Strangeness enhancement : one of the first signals of QGP

Enhancement increases with number of strange quarks in the hadron $\Omega: 3$ strange quarks三: 2 strange quarks ^: 1 strange quark

ALI-DER-80680
Number of particles of a certain type per PbPb interaction $/<\mathrm{N}_{\text {part }}>$
Number of particles of the same type per pp interaction/2

$2^{\text {nd }}$ part of the measurement

Strangeness enhancement in lead-lead collisions

-Analysis of large event samples from lead-lead collisions in different centrality regions
-Find number of $\mathrm{K}_{\mathrm{s}}, \wedge$, anti- \wedge
-Calculate particle yields (number of particles/interaction)
-Calculate strangeness enhancement taking into account particle yields in proton-proton collisions

- Continuum : irreducible background due to random combinations of $\pi^{+} \pi^{-}$or πp
- Fit curves to background (2 ${ }^{\text {nd }}$ degree polynomial) and peak (gaussian)
- Find number of $\mathrm{K}_{\mathrm{s}}, \wedge$, anti- \wedge after background subtraction

Geometry of a Pb-Pb collision

- Peripheral collision
- Large distance between the centres of the nuclei
- Small number of participants
- Few charged particles produced (low multiplicity)
- Central collision
- Small distance between the centres of the nuclei
- Large number of participants
- Many charged particles produced (high multiplicity)

Centrality of $\mathrm{Pb}-\mathrm{Pb}$ collisions

Distribution of the signal amplitude of V0 (plastic scintillators) red line : described by model (Glauber)

Centrality	$d N_{\mathrm{ch}} / d \eta$	$\left\langle N_{\text {part }}\right\rangle$	$\left(d N_{\mathrm{ch}} / d \eta\right) /\left(\left\langle N_{\text {part }}\right\rangle / 2\right)$
$0 \%-5 \%$	1601 ± 60	382.8 ± 3.1	8.4 ± 0.3
$5 \%-10 \%$	1294 ± 49	329.7 ± 4.6	7.9 ± 0.3
$10 \%-20 \%$	966 ± 37	260.5 ± 4.4	7.4 ± 0.3
$20 \%-30 \%$	649 ± 23	186.4 ± 3.9	7.0 ± 0.3
$30 \%-40 \%$	426 ± 15	128.9 ± 3.3	6.6 ± 0.3
$40 \%-50 \%$	261 ± 9	85.0 ± 2.6	6.1 ± 0.3
$50 \%-60 \%$	149 ± 6	52.8 ± 2.0	5.7 ± 0.3
$60 \%-70 \%$	76 ± 4	30.0 ± 1.3	5.1 ± 0.3
$70 \%-80 \%$	35 ± 2	15.8 ± 0.6	4.4 ± 0.4

peripheral collisions

Strangeness enhancement calculation

Yield : number of particles produced per interaction $=$ Nparticles(produced)/Nevents
Efficiency $=$ Nparticles(measured)/Nparticles(produced)*
Yield $=$ Nparticles(measured)/(efficiency \times Nevents)
$\mathrm{K}_{\mathrm{s}}-$ Yield $(\mathrm{pp})=0.25$ /interaction $; \wedge-$ Yield $(\mathrm{pp})=0.0617$ /interaction $;\left\langle\mathrm{N}_{\text {part }}>=2\right.$ for pp

Strangeness enhancement: the particle yield normalised by the number of participating nucleons in the collision, and divided by the yield in proton-proton collisions**
*assumption on efficiency values : to match yields in Analysis Note
Measurement of Ks and \wedge spectra and yields in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{ } \mathrm{sNN}=2.76 \mathrm{TeV}$ with the ALICE experiment
*pp yields at 2.76 TeV from interpolation between 900 GeV and 7 TeV Analysis Note "Ks, \wedge and anti \wedge production in pp collisions at 7 TeV "

Strangeness enhancement : one of the first signals of QGP

Enhancement increases with number of strange quarks in the hadron $\Omega: 3$ strange quarks三: 2 strange quarks ^: 1 strange quark

ALI-DER-80680
Number of particles of a certain type per PbPb interaction $/<\mathrm{N}_{\text {part }}>$
Number of particles of the same type per pp interaction/2

Main Menu
Home page
Installation
Instructions for the Institute
Description of Exercises
English
.docx
.pdf
.docx (web edition)

Welcome to ALICE International MasterClasses

Useful links

ALICE Masterclasses (strange particles) web site https://alice-masterclass.web.cern.ch
Web version (CERN server) https://alice-web-masterclass.web.cern.ch
Web version (Warsaw server) https://masterclass.fizyka.pw.edu.pl
Web version (Trieste server) https://alice-masterclass.ts.infn.it
Results
https://docs.google.com/spreadsheets/d/1tpf86WOKb4xyQeEK90nCgmaleme5E0ZdqqgiK8yNmxk/e dit\#gid=1200756561

ALICE public web site https://alice.cern
ALICE collaboration web site https://alice-collaboration.web.cern.ch

Flying over ALICE (drone video) https://www.youtube.com/watch?v=yWBWzIUCNpw
To visit ALICE (virtually) : alice-outreach-virtual-visits@cern.ch
..and if you want to organise an ALICE masterclass we will be happy to assist In-person
Remotely (zoom)
Organise a training session
Offer a virtual visit to ALICE (the cavern, if accesible, the Contol Room, Q\&A)

Thanks for your attention!

