

Passive and active contact pressure measurement systems in SC magnets

TE-MSC-SMT-Felix Wolf

02/09/2021, TE-MSC seminar

- Motivation / Introduction
- Review of existing contact pressure measure systems
- Passive measurement systems
- Active measurement systems
- Conclusion / summary and outlook

Introduction

- My work at CERN, with the following problems
 - PhD characterization of the Nb₃Sn conductor
 - Conductor limitation due to applied pressure
 - Mechanical measurement on the Rutherford cable stacks
 - Mechanical characterization of the insulation system
 - Characterization of the stress distribution

Mechanical characterization

Neutron diffraction measurements

Contact stress analysis

Magnet preload

Required preload

80				
Щ ⁶⁰		Dipole magnet	Magnetic field	Mid plane stress
		LHC [3]	8.3 T	70 MPa - 75 MPa
		HL-LHC 11T [4]	11 T	125 MPa - 135 MPa
0	$\begin{array}{cccc} 20 & 40 & 60 & 80 \\ & x \text{ in mm} \end{array}$			

Magnetic force distribution in a sector coil.

- Preload to balance magnetic forces
 - Prevent conductor motion induced quenches

The origin of a quench may be a conductor motion under the influence of Lorentz forces resulting in a heating of the cable by frictional energy. [1]

Too high preload

- Permanent degradation of the conductor
- Cracks in the insulation system

SEM micrographs of transverse metallographic cross section of the 200 MPa loaded area of a Nb_3Sn Rutherford cable. [2]

Comparison of an virgin sample (left) and a sample after loading (right) under UV light prior application of a fluorescent penetrant.

[2] Patrick Ebermann et al 2018 Supercond. Sci. Technol. 31 065009

[1] Meß, K.H., Schmüser, P., Wolff, S.: Superconducting Accelerator Magnets, World Scientific, Singapore, 1996

[3] O. S. Brüning, P. Collier, and P. Lebrun, et al., "LHC Design Report", CERN Yellow Reports: Monographs, Geneva, 2004.

[4] M. Karppinen et al., "Design of 11T twin-aperture dipole demonstrator magnet for LHC upgrades," IEEE Trans. App. Supercond., vol. 22, no. 3, 2012.

Commercially available systems

Passive systems

Name	Stress range	Analysis tool
Fuji Prescale [5]	0 MPa to 300 MPa	Fuji Analysis
EZ-Nip paper [7]	0 MPa to 7 MPa	Shoe Press Profile
Mold Align [7]	7 MPa to 41 MPa	Topaq Analysis System
PressureX-Micro Green [7]	0.05 MPa to 12.4 MPa	Point scan
PressureX-Micro [7]	0 MPa to 0.14 MPa	Auto-Nis
Surface Profiler Film [7]	0.1 MPa to 10 MPa	-

All systems are based on pressure sensitive films

②Insert Prescale in desired location and apply pressure

③Remove Pressure and Prescale and you can now See and check the pressure and it's distribution [2]

Active systems

Name	Stress range	Method
TekScan [8]	0 MPa to 200 Mpa	Piezo-resistive
Tactylus [7]	0 MPa to 2.7 MPa	Piezo-resistive
Tactarry [6]	0 MPa to 5 MPa	Capacitive
Sigma-Nip [7]	0.3 MPa to 70 MPa	Thin-film resistor
CERN capacitive gauges	0 MPa to 160 MPa	Capacitive

TactArray Systems

[5] FUJIFILM Prescale Instruction Manual

[6] PPS [Online]. https://pressureprofile.com/ [Accessed 2021].

[7] Sensor Products, Inc., [Online]. Available: http://www.sensorprod.com/ [Accessed 2021].

[8] Tekscan, Inc., I-Scan® Product Selection Guide, [Online]. Available: https://www.tekscan.com [Accessed 2021].

[6]

Passive system

FUJI prescale film

FUJI prescale film – how it works

Extreme Low

Pressure

(4LW)

PRESCALE 4LW

F310 3M

- Mono-sheet
 - MS 10 50 MPa
 - HS 50 130 MPa
 - HHS 130 300 MPa
- Thickness: 100 ± 5 μm
- Spatial resolution: 0.05 mm
- Micro capsules (ø 4 to 15 µm) with different wall thickness per film Type
- Size: 270mm x 10m

Analysed Prescale film similar to ANSYS stress plot .

Overview of available Prescale film types. [5]

310×3

Two-sheet

- Documentation of the developed code
- Mathematical explanation of the used functions
- Explanation of the generated output parameter
- Validation of the measurements
- Source code

https://edms.cern.ch/document/1885552/1

1

- Scan and crop the colorized presclae film
- Calibrate the script according to the used scanner
- Select a transfer function according temperature and humidity during the test
- Execute the analysis script
 - Convert color values into gray scale values
 - Transfer the gray scale values into stress values via an implemented transfer function

Code for data input as documented in the technical node.

📣 MATLAB R2	2015b										X	
HOME	PLOTS APPS	EDITOR	PUBLISH	VEW		6 6 5) £ 6 ?	Search Docum	entation		0 2	ł
New Open	Find Files	Go To V Go To V Find V NAVIGATE	Insert 🛃 Comment ½ Indent 🛐 EDIT		BREAKPOINTS	Run Run a	Run Sec and Advanc nce	ction 🕑 e Run and Time			- 0	
	Gil Workspaces (the field of	ces F T F TWO	If Projects P	offware\dem	ck-up 🖡 FUIL-:	sontware 🕨				0	* /* * /*	1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>m % + % Section: CERM- % Author: Exercise % Contributor: W % Date: Oct 2017 clear all; clor clore all; %</pre>	TE-MSC-IMF IN PATICA of Felix d propert. ples/319.3 ples/320.3 ples/321.3 ples/321.3 PresMeasFi PresMeasFi	Les 29'; 20'; 20'; 1	,dp1MS,'1 ,dp1HS,'1 ,dp1HS,'1	45*,'\\',1\) 15*,'\\',1\) 1*##\$','\\',2\)	; % Select ; ;1);	: the transi	er functic	on à or	E		A/audioana a
IIII - Ready						script			Ln 14	Col	32	

Code for data input in the MATLAB environment.

	Listing 2: calcPresMeasFilm.m
1	% Section: CERN-TE-MSC-LMF
2	% Author: Ebermann Patrick
3	% Contributor: Wolf Felix
4	% Date: Oct 2017
5	
6	<pre>function PicPres = calcPresMeasFilm(sample,dpi,type,curve,log)</pre>
7	
8	X
9	% load of specific parameter
10	12
11	
12	switch type
13	Case / MS /
14	barstep = 5;
15	
16	bound = 50.0;
17	f_{1}
18	$ticklabels = \{10, nra, 20, pra, 30, nra, 40, nra, 50, nra, 5, 50, nra, 5, 50, nra, 5, 50, nra, 5, 50, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1$
19	$y_g = -[0.1,0.3,0.3,0.7,0.3,1.1,1.3,1.3];$
20	Ag_iiies - [datasheet/MS_01 png ,
22	idatasheet/MS_05.png;
23	datasheet/MS_07_png;
24	'datasheet/MS_09.png':
25	'datasheet/MS 11.png':
26	'datasheet/MS 13.png':
27	'datasheet/MS 15.png':]:
28	if(curve == 'A')
29	vf = [4.5,11.0,15.0,19.0,21.5,24.5,27.5,30.0,32.5,35.5,38.0,41.0,45.0,49.5]
	\%XMPa
30	xf = [0.215,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5];
31	else

Code for analysis as documented in the technical node.

Code for analysis in the MATLAB environment.

NO. ELEM. = 103740

ADAPTED grayscales: [132,230] NO. used ELEM. = 91435 (88.14%) too DARK = 1 (0.00%) too BRIGHT = 12304 (11.86%) nearly WHITE = 1232 (1.19%)

Note:

Stress values below or above the stress domain are interpretated equal 0MPa.

FUJI prescale film – limitation

- Stress resolution depends on the gray scale step size (8-bit)
- Analysed gray scale values between 110-230 (120 Steps)
- Stress range can be extended by stacking different types of prescale film

Discrete transfer between gray scale values and stress values.

FUJI prescale film – limitation stress range

- Good agreement between integrated force and load cell
- Pressed area should be known

$$A_{\rm relative} = \frac{A_{\rm Stress \ domain}}{A_{\rm pressed}}$$

 Saturated values can be also interpreted as σ_{MAX}

Integrated force to applied average pressure (determined by load cell).

Examples of application

Cable test

F. Wolf *et al.*, "Characterization of the Stress Distribution on Nb3Sn Rutherford Cables Under Transverse Compression," in *IEEE Transactions on Applied Superconductivity*, 2018.

Magnet assembly

F. Wolf, FUJI Analysis D2 Prototype, CERN, EDMS 2471988

Mockup studies

FUJI prescale film

- Requires disassembly to access the pressure sensitive film
- Only peak stresses can be determined
- Measurement range can be extended by combination of different types

Active system

Tekscan[™] I-Scan system

Tekscan[™] I-Scan system

Experience at CERN

- Used by Paolo Fessia in 2000 for the manufacturing control of LHC dipole magnets in the coil ends.
- A special sensor foil was produced for CERN in 2000
- Used in the 11T collaring mockup study in 2018 by Paolo Ferracin

Development:

- High pressure sensor foils with an upper limit about 200 MPa due elastic limits of the foil.
- Low pressure sensor foils to measure the air flow on a surface.
- Only system at the commercial market which allow an online readout of a contact pressure in a range up to 200 MPa.

Company:

- Small company in Boston with 100 employee
- https://www.tekscan.com/

Coil end press and sensor foil with readout system. [9]

Collaring mockup 2018. [10]

[9] Coil ends measuring procedure, CERN, 2002, provided by Paolo Fessia [10] Collaring kinematics, mechanics, instrumentation, and mock-ups, EDMS 2130333

Tekscan[™] I-Scan system

The measurement system:

- Matrix based sensor using the piezo-resistive effect
- Minimal spacing between rows od columns: 0.6 mm
- Repeatability: < ± 3.5%
- Hysteresis of the sensor: < ± 4.5%
- Pressure range: up to 207 MPa (limited by the deformation of the foil)
- Maximum number of sensing elements 50*44 = 2200 Thickness: 0.1 mm
- Scanning speed up to 100 Hz
- Digital pressure resolution in 8 bit (0-255)
- All sensor foils must be calibrated with respect to the contact material by the customer

Active system

CERN capacitive load transducer

History of capacitive gauge in SC magnet comunity

ID Yea	r Author	Title	Published	Туре	BUCKMORELISCOVACT	TOR LOAD-CHELS			
1 199	0 C. E. Dick	Bulk modulus capacitor load cells	SSC Lab. Plenum Press	Paper	C. E. Dickey Supercondu	r ning Taper Callder Laboratory* manady Annual			
2 199	3 J. Gilquin	Feasibility study of a system for measuring the LHC dipole coil stresses with capacitive probes	Internal Note 93-90	Report	Dalas, T Abatract: Mose SSC Model Dept				
3 199	6 I. Vanenkov	Using capacitive force transducer for measuring stresses in superconducting magnet coils for the LHC	Internal Note 96-14	Report	development ought the parting plane at dasand to shume t experience such at influence of orga througenths of an condition of a setting	CERN			
4 199	6 J. P. Ozelis	Capacitance strain gauges - an Introduction and Modest Proposal	Fermilab	Internal note	ownedy boing in and application of 1 INTRODUCTION	A5 MA/JG		November 93 Internal Note 90-90	
5 199	7 N.Siegel, et al.	Design and use of capacitive force transducers for superconducting magnet models for the LHC	lhc-project-report- 173	Report	The development of projects worldwide, we implementation which on implement. To be of root magnet structure itself, 1 community that load cell. 1	E .			
6 200	2 A. Foussat, et a	I. Mechanical behaviour of the ATLAS B0 Model Coil	IEEE	Paper	device night also have sig THEORY OF MODUL As you know, they	FEASIBILITY THE LHC DIPOLE			
7 200	9 R.B. Ragland	Capacitive stress gauges in model dipole magnets	Texas A&M University	Thesis	*Openand by the Universe During under Contact 3		Nia Naper ad Spenals LBC NR	lanan Goag Tarapin Januar Dar	- 200 10 - 10
8 201	0 M. Guinchard, al.	Techniques of mechanical measurements for CERN application	EDMS 1064933	Presentation	Australian - Calvar IV N. Mak Reaso Paus, New York, 198		ſ		
9 201	0 K. Artoos, et al.	New techniques for mechanical measurements in the superconducting magnet models	IPAC 10 Kyoto	Paper		AT-MA distribution list	USING CAPACIT		
10 201	0 C. Benson	Capacitive stress transducers in model dipole magnets	Texas A&M University	Thesis			STRENGS IV SI	f Fermilat	Des
11 201	1 R. Ballester	Failure analysis of a press for testing sensors in the mechanical measurements lab	EDMS 1146460	Report			ABSTRACT The are describes the 4	-	
12 201	1 R. Ballester	Analysis for the improvement of the capacitive gauges' performance	EDMS 1154650	Report			mashers suble for a on capacitive land refly. Mecodom providers or imperator a proposed a	Capacitance Strai	THE THE
13 201	2 R. Ballester	Study for the improvement of the capacitive pressure gauges' performance, and design of an automated compressing	EDMS 1110695	Thesis			visit a news) and appletion of spatter Directories 3002 dominants for	Attalation	Log Maps Falls TE Mic LNF
14 201	2 R. Ballester	Study of the capacitive gauges and the calibration system	EDMS 1110695	Presentation			L E-mo 1.9 Goates	Recently CEEC has a dor- remove during construction spectreel at more respect sensitivity and reproducted measurements append to be	Characterization and manufacture load gauges inclusiogy
15 201	2 M. Guinchard, al.	Zwick visit report for capacitive gauge and load cell calibration	EDMS 1214523	Visit Report			_	encoderierweit auf, deuegi manneich ist fein opper me' facture afferning their perfo program for persong date e Planets of Operation	Andrew TE Department Felix Well (3) Michel Parent (MIC 2330), Francess Oliv Reywork: Capacities load gauges
16 201	2 C. Benson, et a	I. Improved capacitive stress transducers for high-field superconducting magnets	AIP Conf. Proceed.	Paper				In principle, for conceiving physics enders will have it by a distance if in simply pri-	
17 201	3 K. Velissaridis	Optimization of the capacitive gauges in terms of testing and manufacturing procedures	EDMS 1341108	Presentation				where is, a the pression of a	
18 202	0 F. Wolf	Characterization and manufacturing validation of CERN Capacitive load gauges technology	EDMS 2330901	Report			L.		
19 202	0 F. Wolf	TE-MSC-LMF-QA-Manufacturing procedure of CERN Capacitive gauges	EDMS 2361251	Report					Decision Les Bones, Assed Devel

Road map for development of capacitive gauge

- 1. Retrieve and collect all available knowledge on capacitive gauges
- 2. Build first prototype to learn
- 3. Write manufacturing procedure EDMS: 2361251
- 4. Validate the sensor performance EDMS: 2330901
- 5. Study the multi-physic behavior of the sensor
- 6. Prepare the sensor for implementation and built a small series
- 7. Prepare enhanced sensor design

Capacitive load gauge development for magnet application

- Collection of all available documentation about work on capacitive gauges at CERN (until 2000)
- Knowledge transfer with Michel Parent who was involved in the manufacturing process of capacitive gauges at CERN 20 year's ago
- Test and update existing DAQ system (2000) and LabView code for sensor read out

"Sandwich" type capacitive force transducer design. [11]

Schematic layout of the data acquisition system. [12]

Connections on the capacitive gauge.

Bottom

electrode

Top/bottom electrode

connection

Тор

electrode

Insulating

shrink hose

Principle of capacitive gauge

Strain gauge glue (M610 bond)
 Polyimide film 25.4-50.8 µm

Schematic of the capacitive gauge.

Circuit diagram of the capacitive gauge.

Mechanic

- Two springs in series
 Electric
- Two capacitors in parallel

 $C = C_1 + C_2$ $C = \varepsilon_r \varepsilon_0 n \, w \, \frac{l}{t_0}$

- C... capacitance
- ε_r ... relative permittivity
- ε_0 ... vacuum permittivity (8.85 x 10⁻¹² F m⁻¹)
- $n \dots$ number of layers
- w... width of the gauge
- *l*... length of the gauge
- t... thickness of the dielectric material

Layout of the tested capacitive gauge

Sensor properties

Symbol	Property	Value
ε_0	Vacuum permittivity	8.85 x 10 ⁻¹² Fm ⁻¹
ε_r	Dielectric permittivity of polyimide film	3.3 [13]
n	Number of parallel capacitors	2
l	Length of the gauge	75 mm
W	Width of the gauge	15 mm
t ₀	Thickness of the dielectric layer	25.7µm -28.4µm

_ l	
$C = \varepsilon_r \varepsilon_0 n w \frac{1}{t}$	
ι ₀	75 000
$C(t_0) = 3.3 \cdot 8.85 \cdot 10^{-12} - 2 \cdot 0.015 \text{ m}$	<u>75 000 µm</u>
m m	t_0

Sens or	Measured sensor thickness in µm	t ₀ in μm	Theoretical Capacity C _{th} in nF	Measured Capacity C _m in nF
G1	310	27.9	2.36	2.34
G2	303.3	25.7	2.56	2.41
G3	311.3	28.4	2.31	2.37
G4	308.6	27.5	2.39	2.38

State of the art LCR meter

- LCR meter (Agilent 4263B)
- Switch system (Keithley 7001)
- LabView

Sanaar	HP4263A		Agilent 4263B		
Sensor	Capacitance in nF	STDEV in pF	Capacitance in nF	STDEV in pF	
G1	2.33773	0.4734	2.33745	0.0924	
G2	2.41452	0.4759	2.41463	0.0714	
G3	2.37228	0.4827	2.37295	0.0712	
G4	2.38197	0.4795	2.38184	0.0726	

Comparison of the capacitance signal measured by the old (2000) and the new LCR meter.

DAQ for the capacitive gauges.

Improved precision by factor of 5

Sensor principle under mechnical load

Schematic of the capacitive gauge.

$$\Delta t = t_0 - t_1$$

$$\Delta C = \varepsilon_r \varepsilon_0 n \, wl \left(\frac{1}{t_1} - \frac{1}{t_0} \right)$$

 $\Delta C \sim k \sigma$

- C... capacitance
- ε_r ... relative permittivity
- ε_0 ... vacuum permittivity (8.85 x 10⁻¹² F m⁻¹)
- n ... number of layers
- w... width of the gauge
- *l*... length of the gauge
- t... thickness of the dielectric material
- $\sigma...$ applied compressive stress

Basic model for capacitance variation

C.E. Dickey, 1990 I. Vanenkov, 1996

 Dielectric material is put under hydrostatic stress

Hydrostatic" type design of capacitor load cell. [6]

R.M. Ballester 2012

Uniaxial load in the dielectric layer

Uniaxial stress-strain state of the dielectric layer.

Both models needed to introduce a calibration factor k, based on measurements

 $\Delta C \sim k \sigma$

Stress - strain calculation of the capacitive gauge

Schematic of the capacitive gauge with stress components.

Simplified schematic for analytic model.

Stress – strain state in the dielectric layer

$$\varepsilon_{xx_{diel}} = \frac{1}{E_{diel}} \left(\sigma_{xx_{diel}} - \nu_{diel} (\sigma_{yy_{diel}} + \sigma_{zz_{diel}}) \right)$$

$$\varepsilon_{yy_{diel}} = \frac{1}{E_{diel}} \left(\sigma_{yy_{diel}} - \nu_{diel} (\sigma_{xx_{diel}} + \sigma_{zz_{diel}}) \right)$$

$$\varepsilon_{zz_{diel}} = \frac{1}{E_{diel}} \left(\sigma_{zz_{diel}} - \nu_{diel} (\sigma_{xx_{diel}} + \sigma_{yy_{diel}}) \right)$$

Stress - strain state in the electrode

$$\varepsilon_{xx_{el}} = \frac{1}{E_{el}} \left(\sigma_{xx_{el}} - \nu_{el} (\sigma_{yy_{el}} + \sigma_{zz_{el}}) \right)$$

$$\varepsilon_{yy_{el}} = \frac{1}{E_{el}} \left(\sigma_{yy_{el}} - \nu_{el} (\sigma_{xx_{el}} + \sigma_{zz_{el}}) \right)$$

$$\varepsilon_{zz_{el}} = \frac{1}{E_{el}} \left(\sigma_{zz_{el}} - \nu_{el} (\sigma_{xx_{el}} + \sigma_{yy_{el}}) \right)$$

Stress - strain calculation of the capacitive gauge

In plane stress and strain isotropy

 $\begin{aligned} \varepsilon_{\mathrm{xx}_{k}} &= \varepsilon_{\mathrm{zz}_{k}} = \varepsilon_{\mathrm{l}_{k}} \\ \sigma_{\mathrm{xx}_{k}} &= \sigma_{\mathrm{zz}_{k}} = \sigma_{\mathrm{l}_{k}} \end{aligned}$

 $\varepsilon_{l_{diel}} = \varepsilon_{l_{el}}$

$$\varepsilon_{l_{diel}} = \frac{1}{E_{diel}} \left(\sigma_{l_{diel}} - \nu_{diel} (\sigma_{y} + \sigma_{l_{diel}}) \right) \qquad \qquad \varepsilon_{l_{el}} = \frac{1}{E_{el}} \left(\sigma_{l_{el}} - \nu_{el} (\sigma_{y} + \sigma_{l_{el}}) \right)$$

$$t_{\rm el} = \sum t_{{\rm el}_i} \qquad t_{{
m diel}} = \sum t_{{
m diel}_i}$$

Simplified schematic for analytic model.

Equilibrium of lateral strain between the layers

Equilibrium of lateral forces $F_{l_{diel}} = -F_{l_{el}}$ $t_{diel} w \sigma_{l_{diel}} = -t_{el} w \sigma_{l_{el}}$

-

Lateral stress calculation

$$\sigma_{\rm ldiel} = \frac{\frac{\nu_{\rm diel}}{E_{\rm diel}} - \frac{\nu_{\rm el}}{E_{\rm el}}}{\frac{1 - \nu_{\rm diel}}{E_{\rm diel}} + \left(\frac{1 - \nu_{\rm el}}{E_{\rm el}}\right) \frac{t_{\rm diel}}{t_{\rm el}}}{t_{\rm el}} \sigma_{\rm y} \qquad \qquad \sigma_{\rm lel} = \frac{\frac{\nu_{\rm diel}}{E_{\rm diel}} - \frac{\nu_{\rm diel}}{E_{\rm diel}}}{-\left(\frac{1 - \nu_{\rm diel}}{E_{\rm diel}}\right) \frac{t_{\rm diel}}{t_{\rm diel}}}$$

31

 $\frac{v_{\rm el}}{E_{\rm el}}$

Stress - strain state in the capacitive gauge

Schematic of the capacitive gauge with stress components.

 $\begin{aligned} \Delta C &= \varepsilon_r \varepsilon_0 n \, wl \left(\frac{1}{t_1} - \frac{1}{t_0} \right) \text{ and } t_1 = t_0 \, \varepsilon_{y_{\text{diel}}} + t_0 & t_{\text{el}} = \sum t_{\text{el}_i} \\ \Delta C &= \frac{\varepsilon_r \varepsilon_0 n \, wl}{t_{0_{\text{diel}}}} \left(\frac{1}{\frac{1}{E_{\text{diel}}} \left(1 - 2 \, v_{\text{diel}} \frac{\frac{v_{\text{diel}}}{E_{\text{diel}}} - \frac{v_{\text{el}}}{E_{\text{el}}} \right) \sigma_{yy} + 1}{\frac{1}{E_{\text{diel}}} \left(\frac{1}{E_{\text{diel}}} + \left(\frac{1 - 2 \, v_{\text{diel}}}{\frac{1 - v_{\text{diel}}}{E_{\text{diel}}} + \left(\frac{1 - v_{\text{el}}}{E_{\text{el}}} \right) \sigma_{yy} + 1} \right) & t_{\text{diel}} = \sum t_{\text{diel}} t_{\text{diel}} \\ \end{aligned}$

$$\sigma_{\rm ldiel} = \frac{\frac{\nu_{\rm diel}}{E_{\rm diel}} - \frac{\nu_{\rm el}}{E_{\rm el}}}{\frac{1 - \nu_{\rm diel}}{E_{\rm diel}} + \left(\frac{1 - \nu_{\rm el}}{E_{\rm el}}\right) \frac{t_{\rm diel}}{t_{\rm el}}}{\sigma_{\rm y}}$$

Strain dielectric layer $\varepsilon_{yy_{diel}} = \frac{1}{E_{diel}} (\sigma_{yy_{diel}} - v_{diel}) (\sigma_{yy_{diel}})$

$$\frac{1}{\text{liel}} \Big(\sigma_{\text{yy}_{\text{diel}}} - \nu_{\text{diel}} \Big(\sigma_{\text{xx}_{\text{diel}}} + \sigma_{\text{zz}_{\text{diel}}} \Big) \Big)$$

$$\varepsilon_{y_{\text{diel}}} = \frac{1}{E_{\text{diel}}} \left(1 - 2 v_{\text{diel}} \frac{\frac{\nu_{\text{diel}}}{E_{\text{diel}}} - \frac{\nu_{\text{el}}}{E_{\text{el}}}}{\frac{1 - \nu_{\text{diel}}}{E_{\text{diel}}} + \left(\frac{1 - \nu_{\text{el}}}{E_{\text{el}}}\right) \frac{t_{\text{diel}}}{t_{\text{el}}}}{t_{\text{el}}} \right) \sigma_{y}$$

32

Material properties of the components

Schematic cross section of the capacitive gauge.

Polyimide APICAL AV100 [13]

Symbol	Property	Value
E	Elastic modulus	3.1 GPa
ν	Poisson ratio	0.34
σ_y	Yield strength	69 MPa

Stainless steel 316L [15]

Symbol	Property	Value
Ε	Elastic modulus	191 GPa
ν	Poisson ratio	0.3 [16]
σ_y	Yield strength	320 MPa

[13] APICAL POLYIMIDE, "Datasheet Apical AV," [Online]. Available: https://apicalfilm.com/technical-data/. [Accessed 2020]. [15] C. Scheuerlein, et al., "Mechanical Properties of the HL-LHC 11 T Nb3Sn Magnet Constituent Materials," IEEE Transactions on Applied Superconductivity, 2017 [16] P. Shankar, et al., "Nitrogen redistribution, microstructure, and elastic constant evaluation using ultrasonics in aged 316LN stainless steels," Metall and Mat Trans A 32, 2001

<image>

Advanced analytical model of the gauge.

OH ... EH_

Numerical model of the gauge.

Comparison of analytical and numerical lateral stress components.

Good agreement between numerical and analytical model

i = x, y, z

- Stress state in the polyimide is **not** hydrostatic as assumed in the past [Dickey 1990, Vanenkow 1996]
- Load state in the polyimide is not uniaxial as assumed in the past [R.M. Ballester 2012]

Validation of the analytical model

Comparison of model and measurements

measurement of the capacitance variation under applied load.

- Requires the introduction of a calibration factor.
- Allows a direct determination of the applied stress.
- Advanced model agrees well with the measurement.

Conclusion: The advanced model allows a direct calculation of the capacitance change without a calibration factor.

Sensor validation up to 100MPa

Four gauges stacked on top of each other in one load line

- Good agreement of load cell and capacitive gauge measurement
 - Deviation to load cell 1%
 - Resolution ± 2 MPa (at 100MPa)

Stress distribution applied on the capacitive gauge.

Sensor validation above 100MPa

Two gauges stacked on top of each other in one load line

- Deviation to load cell decreases at high load
 - (2 % at 160 MPa compared to load cell)
- Time dependent capacity increase at constant load

Comparison of the average stress determined by a load cell and capacitive gauge.

Requirements for test equipment

Requirements for an LCR meter

- A stress resolution of 1 MPa requires a capacitance resolution of 0.5 pF
- The stress resolution can be improved by reducing the thickness of the dielectric layer
- Alternative sensor design can be rapidly studied

Presented gauge design

Proposal for capacitive gauge design

Ultra thin glass [17]

Symbol	Property	Value
E	Elastic modulus	72.9 GPa
ν	Poisson ratio	0.208
\mathcal{E}_r	Dielectric permittivity	6.7
t_0	Dielectric thickness	32 µm

Stainless steel 316L [17]

Symbol	Property	Value
Ε	Elastic modulus	191 GPa
ν	Poisson ratio	0.3 [16]
σ_y	Yield strength	320 MPa

Schematic cross section of the capacitive gauge.

Capacitance variation under applied load a sensor with a dielectric layer made from glass.

- Ultra thin glass seems a good candidate as dielectric layer for high stress applications
- The in the capacity can be determined with a presented system with a resolution of 10 MPa
- Ultra thin glass does not creep under high load
- Feasibility study ongoing to machine and process the glass

FUJI Prescale film

- Powerful and cost-effective tool to determine a compressive stress distribution
- Good agreement with calibrated load cells
- Stress determination up to 300 MPa

TekScan

- Only commercially available system to measure up to 200 MPa compressive stress
- No further developments were done to increase the stress range
- Locally too high stresses can damage the sensor

Capacitive gauges

- The sensor has been tested in ideal uniaxial load in laboratory conditions
- A time dependent behavior was observed at high loads (above 100 MPa)
- The gauge allows only to determine an integrated average stress
 - Stress unbalances can bot be determined
 - Shear stresses can damage the sensor
- Analytical modelling approach was validated by numerical calculations and measurements
- Potential improvements are shown by substituting used dielectric material
- The application of the sensor at cryogenic temperature need to be tested

