Finding the Σ^0 's Dalitz Decay with PANDA @ HADES

Jana Rieger

Uppsala University

October 29 Swedish Nuclear Physicist's Meeting 2021

Outline

- \bullet Σ^0 and its Dalitz Decay
- 2 HADES
- Simulation Study
- 4 Conclusion

Hyperons

proton

Hyperons

•000

 Σ^0 and its Dalitz Decay

What if we add strangeness?

proton

Hyperons

What if we add strangeness?

Describe non-point-like character of particles, dependent on four-momentum transfer *q*

 \rightarrow Coupling of photon to hadron

Nucleon: Electron scattering

- Space-like $(q^2 < 0)$ region
- Fixed target experiment

Challenge of hyperons: They are unstable!

- → Study Dalitz decay
 - Makes hyperon-hyperon TFF accessible
 - Time-like $(q^2 > 0)$ region

The Σ^0 Hyperon

$$\Sigma^0 \ I(J^P) = \mathbb{1}(rac{1}{2}^+)$$

Mass: $1193 \pm 0.024 \, \mathrm{MeV}$

Mean life: $(7.4 \pm 0.7) \cdot 10^{-20} s$

Decay mode	Branching ratio
$\Lambda\gamma$	100 %
$\Lambda \gamma \gamma$	< 3 %
$\Lambda e^+ e^-$	$5\cdot 10^{-3}$ unmeasured

P.A. Zyla et al.(Particle Data Group), Prog. Theor. Exp. Phys.2020, 083C01 (2020)

Motivation

- Large branching ratio
- Not measured before
- Transition form factors accessible

Challenges

- $\Sigma^0 \Lambda$ mass difference (only 77 MeV)
 - \Rightarrow low dielectron (e^+e^-) mass
- Large background from $\Sigma^0 \to \Lambda \gamma$

Great tool to attack those challenges: HADES/PANDA

HADES

Simulation Study

Conclusion

GSI and FAIR

HADES @ GSI:

The dielectron expert \longrightarrow

GSI Helmholtzzentrum für Schwerionenforschung, D. Fehrenz, April 2021

PANDA @ FAIR: ← The fast proton expert

Located in Darmstadt, DE

PANDA @HADES – Setup for pp @ 4.5 GeV Beam Time in Spring 2022

Simulation

Simulated signal

- 1000000 events
- 4.5 ${\rm GeV}$ beam kinetic energy $\, \widehat{=} \, \sqrt{s} = 3.5 \, {\rm GeV}$

Simulation

 Σ^0 and its Dalitz Decay

Simulated signal

- 1000000 events
- 4.5 GeV beam kinetic energy $\hat{=} \sqrt{s} = 3.5 \, \mathrm{GeV}$

Analysis Strategy I

Inclusive reconstruction of $\Sigma^0 \to \Lambda e^+ e^-$

Simulation

 Σ^0 and its Dalitz Decay

Simulated signal

- 1 000 000 events
- 4.5 GeV beam kinetic energy $\hat{=} \sqrt{s} = 3.5 \, \text{GeV}$

Analysis Strategy II

(almost) Exclusive reconstruction of $pp \to pK^+\Sigma^0[\Lambda e^+e^-]$, e^+ constructed by kinematic fitting

Strategy I: A Reconstruction

 Σ^0 and its Dalitz Decay

Vertex fit in secondary vertex

- Λ production vertex from e^+ and e^-
- Λ decay vertex from p and π^-
- Λ direction is given by vertex positions
- Kinematic fit ensures 4-momentum conservation in secondary vertex to reconstruct Λ momentum

Finally: Build Σ^0 from $\Lambda e^+ e^-$

- $P(\chi^2) > 1\%$
- $1170 \,\mathrm{MeV}/c^2 < m_\Sigma < 1216 \,\mathrm{MeV}/c^2$
- In peak after fitting, selection: 92

Strategy I: Σ^0 Radiative Decay as Background Source

$$ho
ho
ightarrow
ho K^+\Sigma^0[\Lambda\gamma]$$

 Σ^0 and its Dalitz Decay

- Cross section $pp \to pK^+\Sigma^0$: 23.5 μb
- Fraction that passes the Σ^0 Dalitz selection criteria: $5 \cdot 10^{-8}$ (1 of 20 million)
- Corresponding $S/\sqrt{S+B}$: 9.1

Very good background suppression by kinematic fit

Strategy II: A Reconstruction

 Σ^0 and its Dalitz Decay

Vertex fit in secondary vertex

- Σ^0 decays in interaction point, Λ in secondary vertex
- Find two vertices from $p\pi^-$ and pK^+
- Λ direction is given by vertex positions
- ullet Kinematic fit in secondary vertex to reconstruct Λ momentum

Strategy II: e⁺ Reconstruction

 Σ^0 and its Dalitz Decay

Get e^+ from $pK^+\Lambda e^-$ missing 4-momentum

- Initial 4-momentum is known
- Λ candidate from vertex fit
- p, K^+ and e^- measured
- Determine e⁺ momentum by kinematic fit

Kinematic fitting software developed in Uppsala

Strategy II: Σ^0 Reconstruction

Finally: Build Σ^0 from Λe^+e^-

Selection criteria:

- $P(\chi^2) > 1\%$
- $1150 \,{
 m MeV}/c^2 < m_\Sigma < 1250 \,{
 m MeV}/c^2$

Strategy II: Most Prominent BG: Σ^0 Radiative Decay

$$pp o pK^+\Sigma^0[\Lambda\gamma]$$

 Σ^0 and its Dalitz Decay

- Cross section $pp \rightarrow pK^+\Sigma^0$: 23.5 μb
- Fraction that passes the Σ^0 Dalitz selection criteria: $4.5 \cdot 10^{-5}$ (886 of 20 million)
- Corresponding $S/\sqrt{S+B}$: 11.5
- Phase space largely overlapping

Apply background suppression selection

- Electron production vertex and hit structure
- Signal: -18%; BG: -76%
- New $S/\sqrt{S+B}$: 17

Strategy I and II

Strategy I

- Detected particles: e^- , e^+ , p, π^-
- Very good background suppression
- Counts/day: 15

Strategy II

- Detected particles: p, K^+, e^-, p, π^-
- Full reaction
- More signal, more background
- Counts/day: 152

Outlook

 Σ^0 and its Dalitz Decay

Feasibility Study

- Fine-tune selection
- Optimize background suppression

Data

- Prepare detector and software for data taking in 2022
- Perform the measurement
- Get lots of exciting high quality data!
 - ... and analyze them

Future

• Can this be done better with PANDA?

Hyperon beam time !!!Spring 2022!!!

BACKUP

Strategy I: Most Prominent BG: Σ^0 Radiative Decay

Find background suppression criteria

Cut on RICH index > 0 and isPrimaryVertex == 1

Signal: 1153 \rightarrow 947; **BG:** 886 \rightarrow 209

New S/B: 0.477

Expected Count Rates

- Luminosity $\mathcal{L} = 1.5 \cdot 10^{31} \, \mathrm{cm}^{-2} s 1$ (beam time proposal)
- Cross section $\sigma(pp \to pK^+\Sigma^0) = 23.5 \,\mu \mathrm{b}$
- Branching ratio ${
 m BR}(\Sigma^0 o \Lambda e^+ e^-) = 5 \cdot 10^{-3}$
- Efficiency and Acceptance $(\epsilon \cdot A \cdot \mathrm{BR}(\Lambda \to p\pi^-))$ = 9.968 · 10⁻⁴ (exclusive $pp \to pK^+\Sigma^0[\to \Lambda e^+e^-])$ = 9.684 · 10⁻⁵ (inclusive $\Sigma^0 \to \Lambda e^+e^-$)

$$p p o p \mathcal{K}^+ \Sigma^0 [o \Lambda(e^+) e^-]/\mathsf{day}$$

 $N_{\mathrm{LH}} = \mathcal{L} \cdot \sigma \cdot \mathrm{BR} \cdot (\epsilon A) \cdot t \approx 152$

$$\Sigma^0 o \Lambda e^+ e^-/{\sf day}$$

$$N_{\mathrm{LH}} = \mathcal{L} \cdot \sigma \cdot \mathrm{BR} \cdot (\epsilon A) \cdot t \approx 15$$