

Recent results on transfer reactions using the MINIBALL/T-REX set-up

Thorsten Kröll

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Work supported by BMBF (Nr. 06DA9036I and 06MT238), EU (EURONS Nr. 506065), HIC for FAIR, DFG (Excellence Cluster Universe), and the MINIBALL/REX-ISOLDE collaborations

Transfer reactions

• "meaning" of SF's?

... however, successful tool in nuclear spectroscopy for more than 50 years!!!

Challenges and (open) questions

Optical potentials (input for DWBA) for radioactive nuclei are not known

- elastic scattering of target nuclei
- extrapolation from stable systems (global description needed)

Low beam energy ... current limit is 3 MeV/u ... and low Q values

- small proton energies in backward direction
- smooth angular distributions
- spectroscopic factors are consistent?
 - → study of ⁵⁴Fe(d,p)⁵⁵Fe at different energies M. Mahgoub et al. EPJA 40, 35 (2009)
 - large spectroscopic factors agree well
 - small spectroscopic factors can change ... not yet understood

Direct transfer reaction or rather fusion-evaporation reaction?

- evaporation
 thermal energy spectra / isotropic angular distribution
- d(³⁰Mg,³¹Mg)p @ 2.2 MeV/u ... NO protons from evaporation
- neutron-rich nuclei: S_n << S_p → neutrons will be evaporated (confirmed by Hauser Feshbach calculations)

→ protons originate from direct transfer process! M. Pantea, PhD Thesis, TUD (2005)

Overview of experiments done so far ...

TECHNISCHE UNIVERSITÄT DARMSTADT

T-REX – Si particle detector array

<u>T-REX</u> ... Si detector array for <u>Transfer</u> experiments at <u>REX</u>-ISOLDE

- large solid angle (58% of 4π)
- position sensitive
- PID (ΔE-E): p, d, t, α,
 ... and e⁻ from β-decay (!)

Technical details:

Barrel:140 μm Δ E / 16 resistive strips
1000 μm E / padBackward CD:500 μm Δ E / DSSSD
500 μm E / pad

<u>V. Bildstein, K. Wimmer</u>, Th. Kröll, R. Gernhäuser et al. (funded by TU München, KU Leuven, U Edinburgh, CSNSM Orsay, TU Darmstadt)

Experimental set-up: T-REX & MINIBALL

³¹Mg ... isotope right on the beach

Island of Inversion again ... 35 years after its discovery? C. Thibault et al., Phys. Rev. C 12, 644 (1975)

Intruder fp orbitals compete with sd orbitals -> breaking of N=20

Models describing well ^{30,32}Mg fail to reproduce the 1/2⁺ spin/parity assignment for the g.s. of ³¹Mg!?!

→ after adaption of a few matrix elements agreement with exp. data for g.s. of ³¹Mg achieved

Our aim: Investigation of single-particle structure of excited states

Experiment Mixed

np-nh

1/2+ -1.37

0p-0h

5/2+

2p-2h

1p-1h

d(³⁰Mg, ³¹Mg)p – γ-ray spectrum

- Q₀₀ = 0.18 MeV
- ³⁰Mg @ 2.86 MeV/u
- 1- 4 · 10⁴ part/s
- 1 mg/cm² deuterated PE
- populated states not resolved in proton spectrum
- γ-rays needed

γ-rays in coincidence with protons

Doppler correction assuming θ(³¹Mg) = 0°

Analysis by <u>Vinzenz Bildstein</u> (PhD Thesis at TU München)

d(³⁰Mg, ³⁰Mg)d – elastic scattering

Fit to elastic scattering data

³⁰Mg @ 2.86 MeV/u: elastic scattering → <u>luminosity</u> All DWBA calculations with FRESCO I. J. Thompson, Comp. Phys. Rep. 7, 167 (1988)

Extrapolation of global parameter sets for optical potentials

³⁰Mg – beam composition

- Analysis of release curves
- Bragg chamber in beam dump

89% ³⁰Mg 11% ³⁰Al <1% others ... directly from ISOLDE + decay products

Proton spectra from reactions are NOT affected by ³⁰Al because of different Q value

³¹Mg – angular distribution of protons

protons in coincidence with 170 keV γ-transition
analysis using fitted potential parameters

• ∆L=1

→ state has negative parity
 "spectroscopic factor"
 S(221 keV) ≈ 0.084

Fit to ALL protons (keeping Δ L=1 contribution fixed) $\rightarrow \Delta$ L=0 for g.s., Δ L=2 for 50 keV state, "spectroscopic factors" S \approx 0.27

Neutron coupled to ³⁰Mg core

T. Rodriguez, J. L. Egido; priv. communication (2008) ... qualitative discussion:

³¹ Mg
$$\rangle = |$$
 neutron ; *nlj* ... $\rangle \otimes |$ ³⁰ Mg \rangle

TECHNISCHE

UNIVERSITÄT DARMSTADT

³⁰Mg: Beyond Mean Field (BMF)

- projection on angular momentum and particle number
- configuration mixing
- ➔ ³⁰Mg nearly spherical

Transfer will populate states with neutron coupled to prolate configurations

- ➔ larger spectroscopic factor
- or oblate configurations
- ➔ smaller spectroscopic factor

The small SFs indicate that core changes entering the "Island of Inversion"!!!

Shape coexistence in ³¹Mg?

Shape coexistence at the shore of the island of Inversion - the second 0⁺ in ³²Mg

Coexistence of spherical and deformed states

Missing part is second 0⁺ in ³²Mg ... has not been observed so far !!!

Similar particle-hole configurations ↔ large overlap of wave functions → large spectroscopic factor for transfer

t(³⁰Mg, ³²Mg)p – two-neutron transfer

- ³H loaded Ti foil (40 μg/cm² ³H, 10 GBq)
 ³⁰Mg @ 2 MeV/u (to avoid fusion with Ti!!)
 4·10⁴ part/s / 150 h beam on target
- Q₀₀ = -295(20) keV

Kinematically reconstructed excitation energy in ³²Mg

 Moderate resolution due to kinematics

 Two states populated: ground state and <u>new state at</u> <u>1083(33) keV</u> ... candidate for the second 0⁺ state!!!

³²Mg – coincident γ-ray spectrum

• NO strong $2^+ \rightarrow 0^+$ transition

- no direct population of 2⁺ state ... protons only from transfer to 0⁺ states
- E_{γ} =172 keV \rightarrow E(0⁺) = 1058 keV \rightarrow 2⁺ ... consistent with 1083 ± 33 keV estimated γ -ray yield : 18(3) counts
 - \rightarrow state decays outside of MINIBALL ... rough estimate $\tau > 10$ ns

10⁻².

160

ϑ_{cm} [°]

180

• optical model parameters fitted to elastic scattering data, very similar results with exptrapolation from systematics

C. M. Perey & F. G. Perey, At. Data Nucl. Data Tab. 17, 1 (1976)

10⁻².

- almost pure pair transfer, sequential transfer negligible
- both angular distributions are well described with △L=0 transfer → <u>0⁺ states</u>

160 180

ϑ_{cm} [°]

³²Mg levels – comparison with theory

TECHNISCHE

UNIVERSITÄT DARMSTADT

Predictions by theory for the excitation energy of the second 0⁺ state in ³²Mg are all considerably higher than the experimental value!

E. Caurier et al., Nucl. Phys. A 693, 374 (2001); T. Otsuka et al., Eur. Phys. J. A 20, 69 (2004); R. Rodriguez-Guzmán et al., Nucl. Phys. 709, 201 (2002)

Transfer to ground state in ³²Mg

- pure transfer to $(f_{7/2})^2$ by far to small (radial mismatch)
- large contribution from $(p_{3/2})^2$ needed (a > 0.7)
- ... SDPF-M underestimates the $vp_{3/2}$ content in the wave functions
- .. similar to results obtained in neutron knockout from ^{32,33}Mg
- J. R. Terry et al., Phys. Rev. C 77, 014316 (2008); R. Kanungo et al., Phys. Lett. B 685, 253 (2010)

Transfer to excited 0⁺ state in ³²Mg

Wave function similar to g.s. in ³⁰Mg

Two-neutron spectroscopic amplitudes for pure sd \rightarrow sd transitions (calculated with USD interaction):

- cross section underestimated
- small $(p_{3/2})^2$ amplitude (a \approx 0.3) has to be added

... observed also in neutron knockout from ³⁰Mg

J. R. Terry et al., Phys. Rev. C 77, 014316 (2008)

d(²⁸Na,²⁹Na)p - IS502 ... approved

t(⁴⁴Ar,⁴⁶Ar)p – probing N=28

 Weakening of N=28 closure below ⁴⁸Ca?
 → onset of deformation / shape coexistence??? looking for the second 0⁺

Transfer reactions at HIE-ISOLDE

Higher energies at HIE-ISOLDE allow for transfer reactions also with heavy beams!

Several Lol's for HIE-ISOLDE involve nucleon transfer reactions with MINIBALL & T-REX:

- shell evolution
- shape coexistence
- pairing correlations 🗇 pair transfer
- nuclear astrophysics:

(d,p) \Leftrightarrow (n, γ) capture reactions

Upgrade of T-REX ... more flexible geometry of Si detectors

Spectrometer planned to identify heavy transfer products

Showcase example: d(¹³²Sn,¹³³Sn)p

A kind of summary ...

TECHNISCHE UNIVERSITÄT DARMSTADT

- One- and two-neutron transfer reactions at REX-ISOLDE ... valuable tool to study exotic nuclei
- Versatile set-up: T-REX & MINIBALL
- Particle γ-ray coincidences often needed to identify populated states!!!
- Deuterium und Tritium targets
- Experiments performed with exotic Be to Zn beams
- First results published
- ... bright perspectives for transfer reactions at HIE-ISOLDE

Announcement: Spettrometer workshop

Workshop on

Spectrometer for HIE-ISOLDE

March 10-11, 2011 at Lund

... further informations will be available soon

Organising Committee: Joakim Cederkäll Yorick Blumenfeld Thorsten Kröll Juha Uusitalo