

The new physics possibilities with HIE-ISOLDE

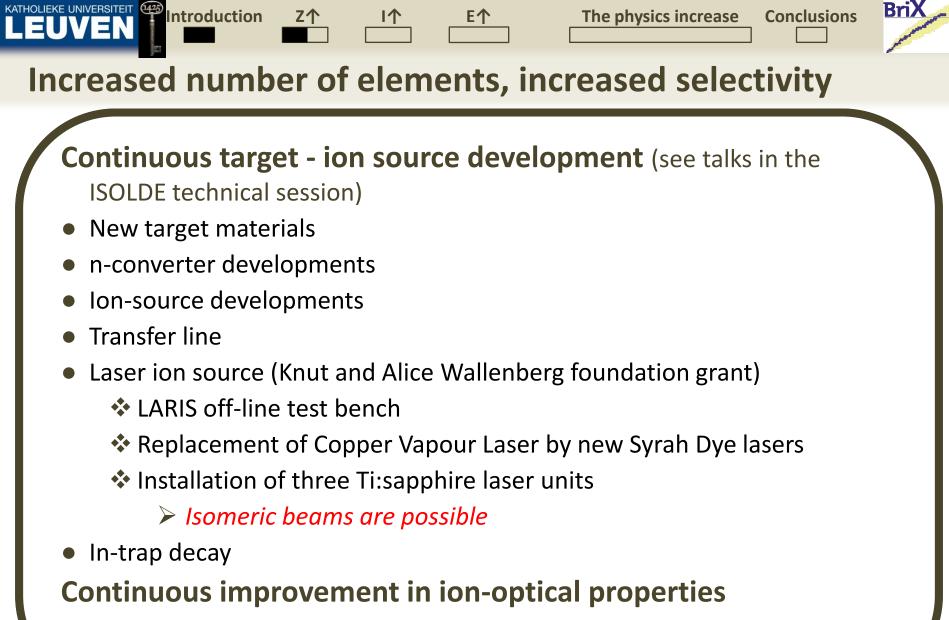
Mark Huyse

Instituut voor Kern- en Stralingsfysica, K.U.Leuven

- ISOLDE today offers the largest range of available isotopes of any ISOL facility worldwide (>600 radioactive isotopes of >60 elements) in an energy range between 60 keV and 3 AMeV.
- HIE-ISOLDE aims at increasing the range of elements, the energy of these RIB up to 10 AMeV and their intensity by a factor 10.
- HIE-ISOLDE will play an important role in the network of ISOL facilities preparing EURISOL (with SPIRAL2 and SPES).

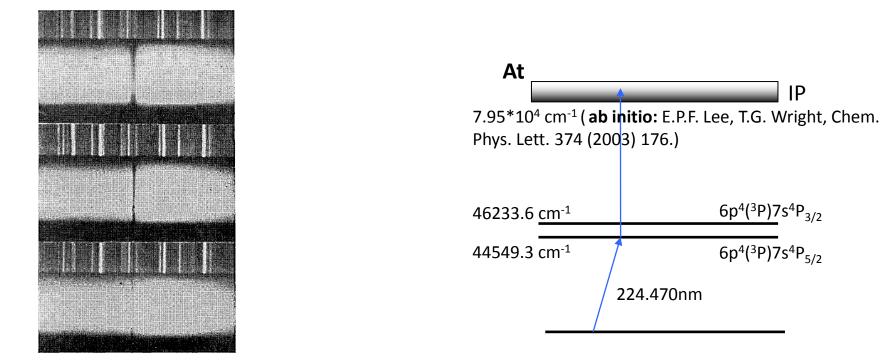
Mark Huyse– IKS, K.U.Leuven

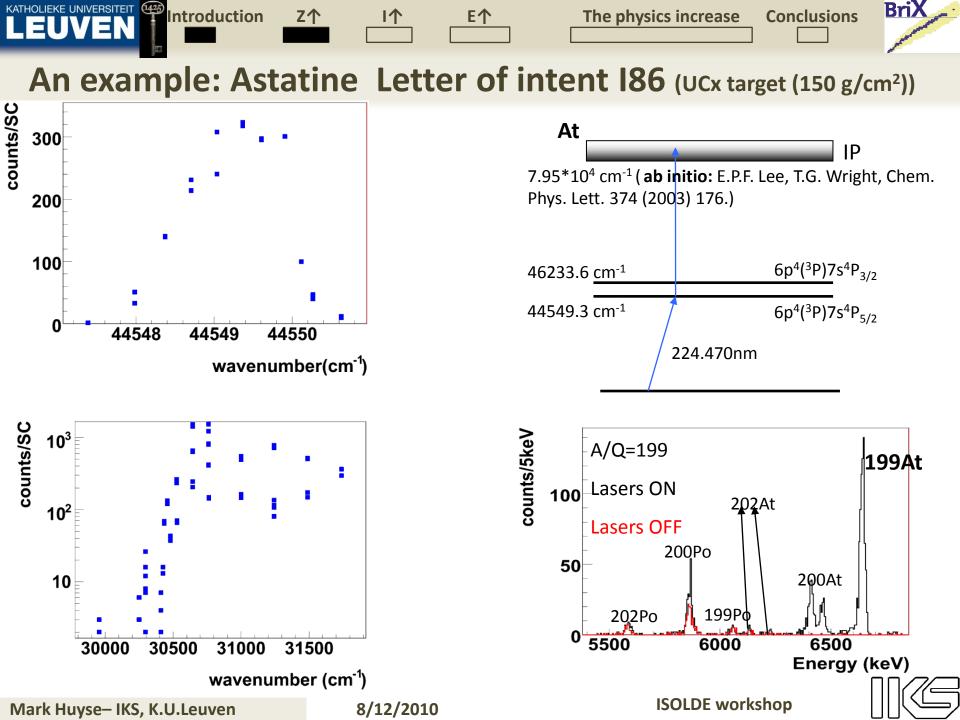
8/12/2010

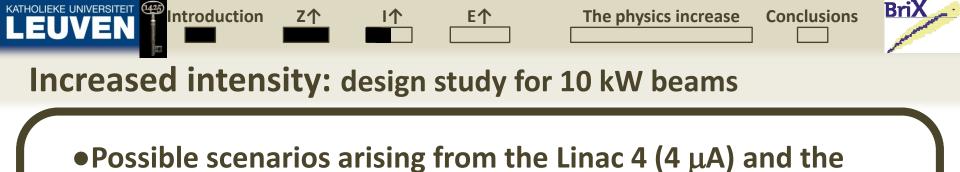

Increased number of elements, increased selectivity

Н															He		
Li	+ SURFACE – hot PLASMA cooled LASER								В	С	N	Ο	F	Ne			
Na	Mg									AI	Si	Ρ	S	Cl	Ar		
К	Са	Sc	Ті	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115			
			Co	Dr	Nd	Dm	<u>C</u> m	с	Cd	ть	Dv	Ha	C 10	Tm	Vh		
			Ce	Pr	Nd	PM	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Mark Huyse- IKS, K.U.Leuven


8/12/2010


- ISCOOL : RFQ cooler buncher
- HRS higher mass resolving power



Previously produced non-selective in plasma ion source Is laser ionization possible?

R. McLaughlin. Absorption Spectrum of Astatine. *Optical Society of America*,54 (1964) 965-967.

- Need to upgrade the targets, target stations and
- infrastructure to accommodate a x4 increase in beam power.

Intensity (p/pulse)	Intensity (μA	A) Energy (GeV)	Cycle (s)	Power (kW)				
3 X 10 ¹³	2	1.4	1.2	2.8				
6 x 10 ¹³	4	1.4	1.2	5.6				
6 x 10 ¹³	4	1.4	0.9	7				
6 x 10 ¹³	4	2	1.2	8				
6 x 10 ¹³	4	2	0.9	10				
based on transparancies from R. Catherall								
ıyse– IKS, K.U.Leu	ven 8	/12/2010	ISOLDE workshop					

Increased intensity: target and front end design

Issues to be addressed

Targets

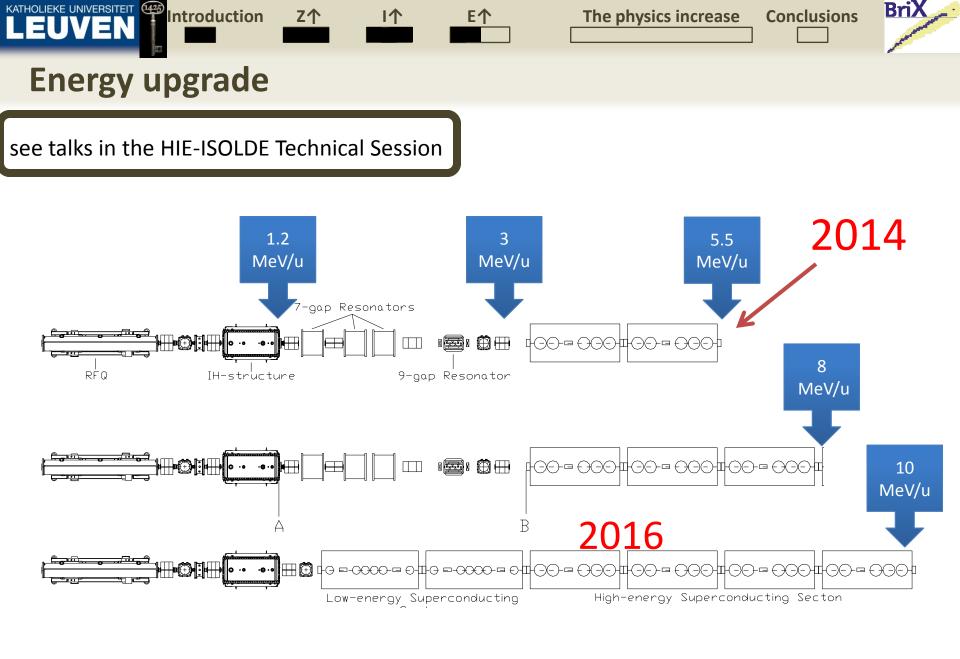

Target lifetime, material science, ion source optimization, geometry, energy deposition, handling, elimination pathway.

• Front Ends

Material resistance,
 maintenance, optics, vacuum
 systems, remote operation...

Starting point

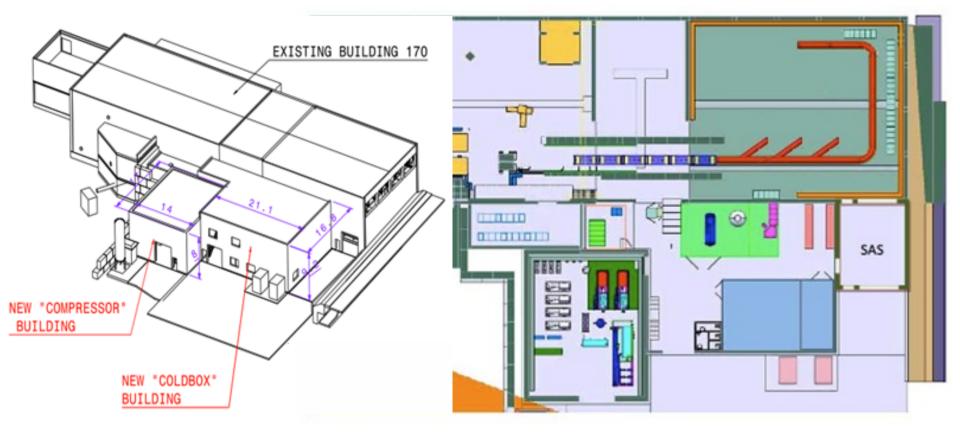
Simulation of radiation levels



FE#6 – a step towards HIE-ISOLDE

Mark Huyse- IKS, K.U.Leuven

8/12/2010



Mark Huyse– IKS, K.U.Leuven

8/12/2010

Energy upgrade

Call for LOI (Deadline May 2010, discussed at INTC June 2010)

• 34 Letters submitted

Introduction

(1425)

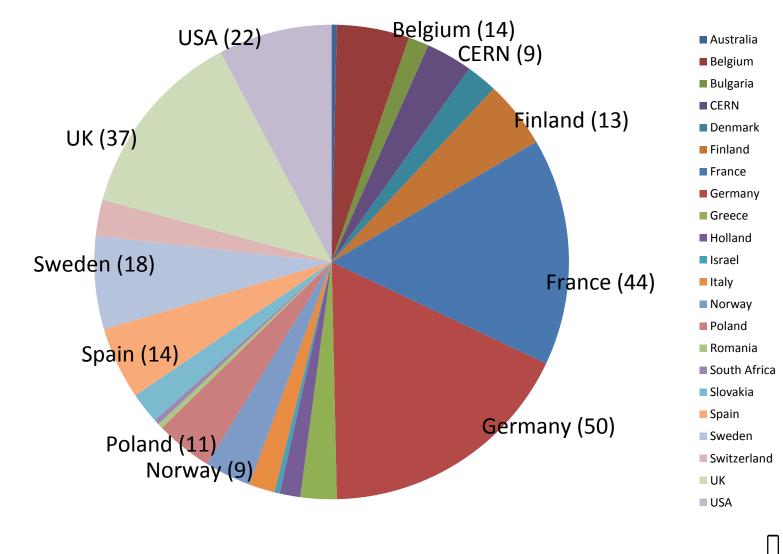
KATHOLIEKE UNIVERSITEIT

- 284 Participants from 76 Laboratories in 22 Countries
- 30 LOIs make use of the Energy and Intensity increases; 4 of the intensity upgrade only
- Major mechanisms are Coulex (13) and transfer (16); elastic scattering (3); fission (2)
- (3) letters concern masses and moments; (4) astrophysics and (5) major new instrumentation
- Major subjects: Nuclear shapes ; Shell evolution; Halo properties; Nuclear astrophysics

8/12/2010

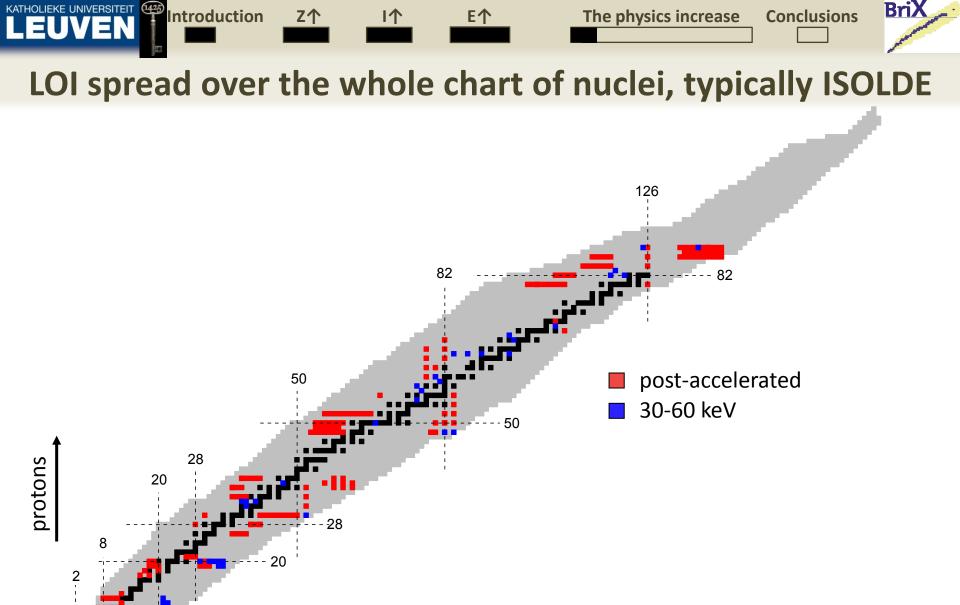
based on transparancies from Y. Blumenfeld

The physics increase


ISOLDE workshop

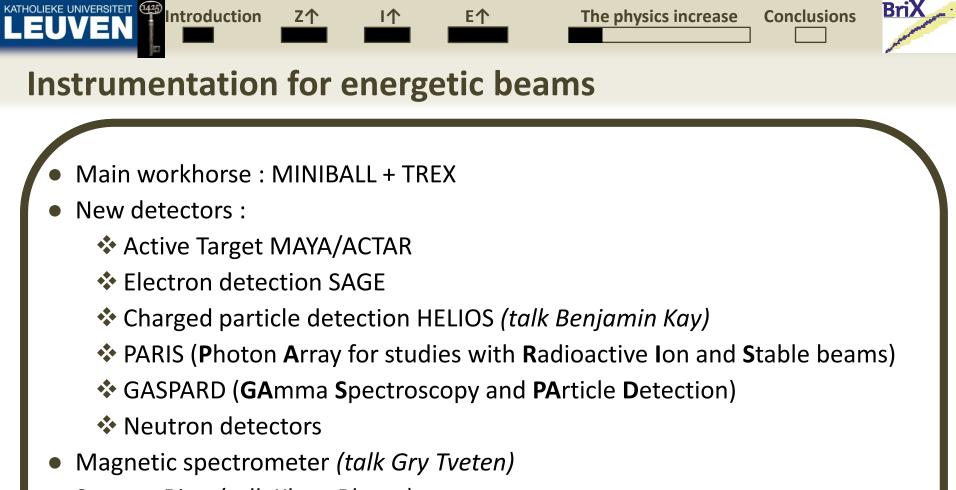
BriX

Conclusions


LEUVEN Introduction Z I I E E Conclusions

LOI participants per country

Mark Huyse– IKS, K.U.Leuven


8/12/2010

Mark Huyse– IKS, K.U.Leuven

neutrons

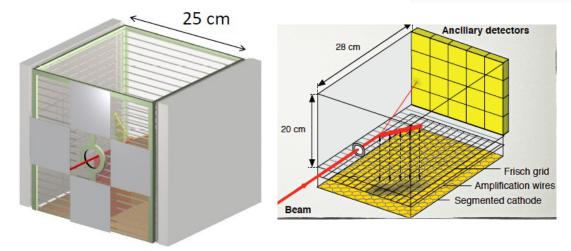
8/12/2010

- Storage Ring (talk Klaus Blaum)
- Special requirements
 - Time of Flight detection => buncher + chopper
 - Slow EBIS extraction
 - Beam spot

8/12/2010

A selection out of the LOI's and past experiments

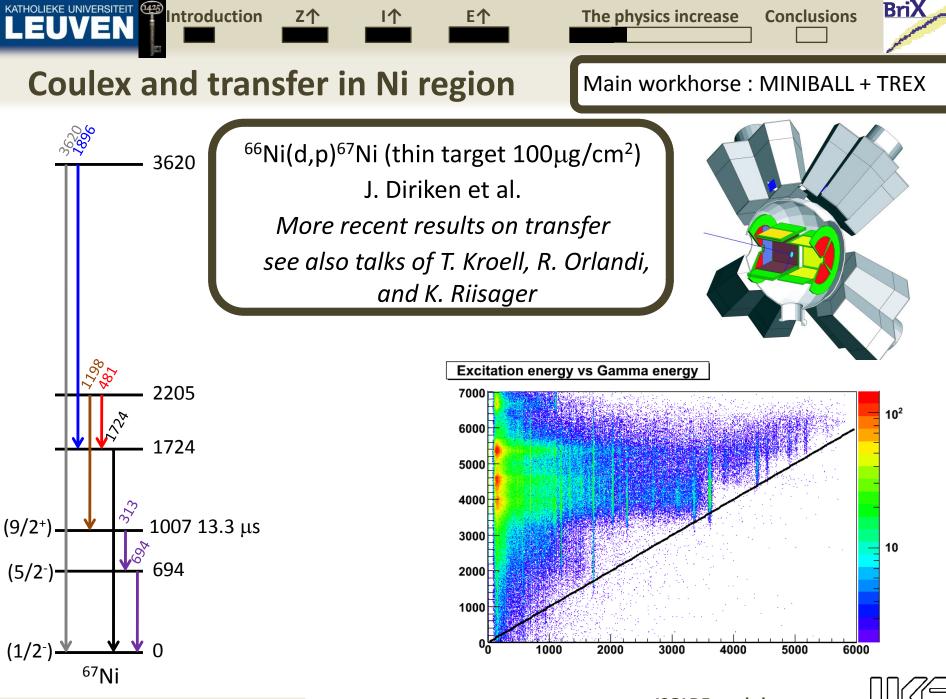
Reactions with an Active Target


Light nuclei (nuclear structure, nuclear astrophysics)

- Transfer reactions to access very exotic states Example: ⁹C(d,p)¹⁰C*
- Resonant reactions
 Example: ¹²Be + p

 Keys: Resolution (energy and spatial)
 Efficiency

R. Raabe et al.M. Camaano et al.


Mark Huyse– IKS, K.U.Leuven

elastic: ¹²C(^AZ, ^AZ)¹²C, ¹H(^AZ, ^AZ)¹H, - optical potentials,
 mass of resonances? (⁷³Rb)

- inelastic: ¹²C(^AZ, ^AZ*)¹²C*, ¹H(^AZ, ^AZ*)¹H, beam spectroscopy (⁷⁶Sr)
- neutron transfer: ¹²C(^AZ, ^{A-1}Z)¹³C, mass of ^{A-1}Z system (⁷¹Kr)
- proton transfer: ¹²C(^AZ, ^{A+1}Z+1)¹¹B, mass of ^{A+1}Z+1 system (⁷³Rb, ⁷⁷Y)
 indirect measurement of p-capture
- fusion: ¹H(^AZ, ^{A+1}Z+1)γ, direct proton capture

8/12/2010

Mark Huyse– IKS, K.U.Leuven

8/12/2010

KATHOLIEKE UNIVERSITEIT <u>BriX</u> Introduction The physics increase **Conclusions** Z个 **p**- γ and γ - γ coincidences: prompt (MB) & delayed (Beam Dump detector) MINIBALL coincidences with 1724 keV Beamdump coincidences with 1198 keV 3650 1860 Counts 08 Counts 3620 80 481 313 60 694 20

2000

Մ**խկում ի**ստեմ խներել ո

1500

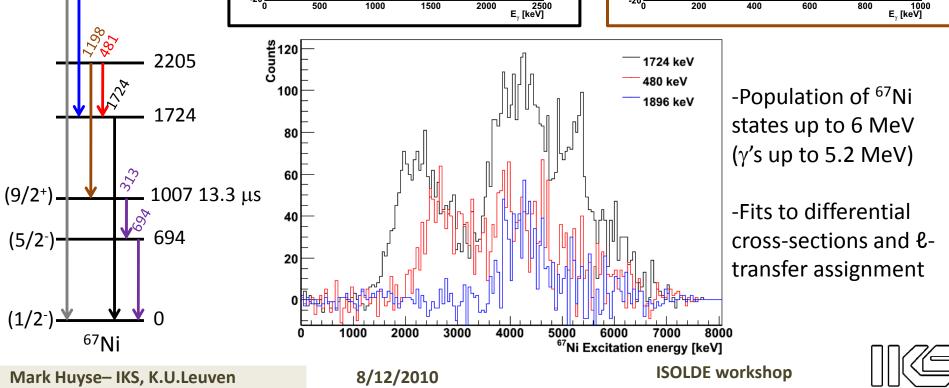
-20 ſ٥.

500

1000

20

-20


200

400

600

800

1000

LEUVEN Introduction Z↑ I↑ E↑ The physics increase Conclusions

Coulex and transfer in Ni region

LOI (Orlandi et al.)

- 68 Ni(d,p) and 80 Zn(d,p) N=41 and N=51 single-neutron states (g_{9/2}, d_{5/2}, s_{1/2}, d_{3/2})
- (t, α) reactions on ^{76,78,80}Zn:
- study single-proton states in ^{75,77,79}Cu (2p_{3/2}, 1f_{5/2}, 1f_{7/2})
- ⁶⁶Ni(t,p) to characterize 0⁺ states in ⁶⁸Ni
- ⁸⁰Zn(¹⁰Be,¹²C): spectroscopy of ⁷⁸Ni

Higher energies at HIE-ISOLDE allow for transfer reactions also with heavy beams!

ISOLDE workshop

Mark Huyse- IKS, K.U.Leuven

8/12/2010

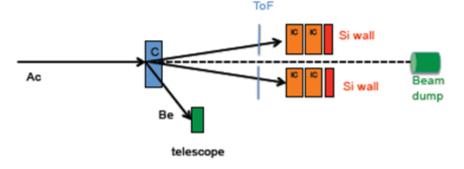
<u>BriX</u> Z个 The physics increase **Conclusions** 一个 E个 **Coulomb excitation and transfer in the n-rich Sn region** TECHNISCHE Coulomb excitation UNIVERSITÄT DARMSTADT Higher energies at HIE-ISOLDE enable ... multiple Coulomb excitation ... population of high lying states, e.g. 3 states (for ¹⁴⁰Xe: 10 x σ @ REX) ^{138,140...}Xe, ^{140,142,...}Ba ¹²⁴Ba octupole correlations, $B(E3,0^+\rightarrow 3^-)$ shape coexistence / phase transition (RMF) oblate/prolate deformation of 23+ . . . T. Kroell et al. ¹³⁶Te 126,127,128**Cd** shell model near ¹³²Sn.

- onset of deformation next to N=82 (BMF)
 coupling of b intruder to even even even
- coupling of h_{11/2} intruder to even-even core

June 23, 2010 | 37th INTC Meeting @ CERN | TU Darmstadt | Thorsten Kröll | 3

low B(E2,0⁺ \rightarrow 2⁺),

structure of 22⁺, 41⁺...

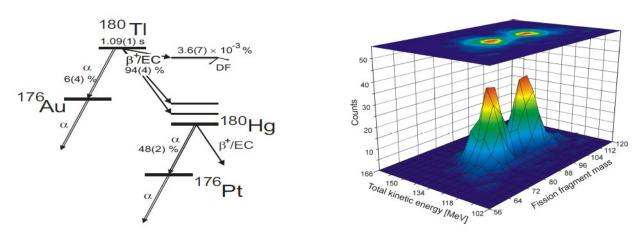

HiE ISOLDE: an unique opportunity for fissionists

- 10 MeV/u actinide beams with >10⁶ pps: ²⁰⁵⁻²²⁰Rn, ²⁰⁵⁻²²⁷Fr, ²¹²⁻²²⁸Ra
- Possibility to extend to other actinides (²³²Th,^{235,238}U,...) T. Stora priv. comm.
- Simple set-up to measure precisely as a function of excitation energy

- TKE,
- fission probability,

F. Rejmund et al.

Study shell effects and pairing effects in fission of unstable actinides
Inverse kinematics gives access to complete fission distributions



Mark Huyse– IKS, K.U.Leuven

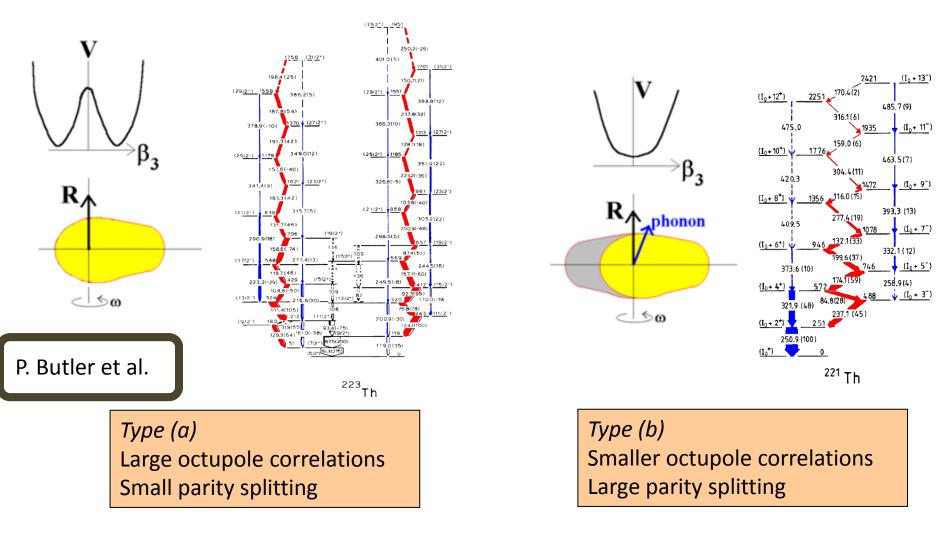
8/12/2010

β-delayed fission *see talk V. Liberati*

Transfer induced fission of heavy radioactive beams

•Fission barrier heights

M. Veselsky et al.


Mark Huyse- IKS, K.U.Leuven

8/12/2010

Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes

Searches for permanent EDM in Ra isotopes

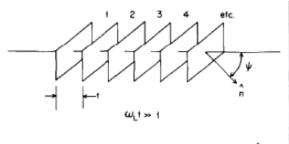
Experimental development

- KVI, Groningen, frequent access to beam
- Efficient conversion to intense atomic beam
- connection to "Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes" (INTC-I-091)

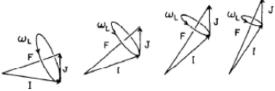
Transfer of experiment to high flux facility (ISOLDE)

- improve statistical limit on EDMs
- utilize several isotopes for systematic studies

e.g. efficient neutral atom trapping of heavy alkaline earth elements


 > 1% capture efficiency from thermal atomic beam (S. De et al. PRA 79, 041402(R) (2009).

L. Willmann et al.


Polarized beams by the tilted-foil technique

Z个

Introduction

KATHOLIEKE UNIVERSITEIT

β-NMR setup from HMI Berlin transferred to ISOLDE

- gain of complete control on the TF polarization
- nuclear structure (moments, reactions ...), nuclear methods in the solid-state physics, biophysics etc. ...

The physics increase

• Flexible set up (depending on application)

<u>BriX</u>

Conclusions

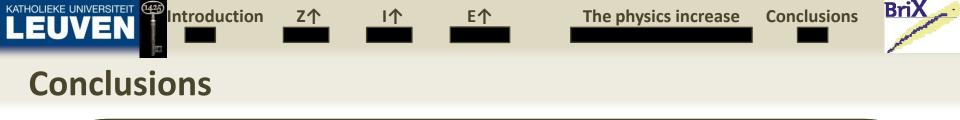
Mark Huyse- IKS, K.U.Leuven

G. Georgiev et al.

8/12/2010

- In order to coordinate the physics requirements of the ISOLDE users community with the technical developments needed for HIE-ISOLDE a *Physics Coordination Group* has been installed.
- Y. Blumenfeld is chairing this group which has further the following members:

M. Borge, P. Butler, M. Huyse, D. Jenkins, Y. Kadi, M. Kowalska, T. Kroell, M. Pasini, R. Raabe, E. Siesling and O. Tengblad.


Please contact these persons for further information and certainly also input.

- **Conclusions from the first meeting of the Physics Coordination Group**
 - HIE-ISOLDE beam features missing or room for improvement:
 - Time structure
 - bunching and debunching + chopper (100 ns microbunch structure would be beneficial)
 - slower EBIS extraction
 - 1 mm diameter for HELIOS (but 3 mm might also work).
 - Agreement of the layout (*which needs to be fixed by June 2011*): In 2014 there will be 2 short beamlines (for Miniball and a second detector) and a third, U-shape beamline will be most probably added when the funds are available.
 - A working group on the spectrometer should be set up => Workshop in Lund, March 10-11, 2011.
 - The community should be stimulated to obtain the remaining funds for the different packages.
 - HIE-ISOLDE will require 2 DAQ rooms.

- HIE ISOLDE will offer an unmatched variety of beams at energies ranging from 60 kV to 5.5A MeV (2014) and to 10A MeV (2016).
- A design study is performed to profit from the developments at the PSB and LINAC4 in order to cope with 10 kW beams.
- 34 LOIs have been submitted promising a rich physics program.
 More LOI's can be submitted to the INTC (first chance: M. Kowalska expect them on January 5, 2011 at noon)
- It will be efficient to share detectors between HIE-ISOLDE, SPES and SPIRAL2.
- These 3 facilities will pave the way towards EURISOL if the community coordinates its efforts.

