

Reactions induced by ¹¹Be beam at Rex-Isolde.

Alessia Di Pietro

INFN-Laboratori Nazionali del Sud

Outline

- Overview of previous results.
- Description of the Beryllium experiments: ^{10,11}Be at REX-ISOLDE
 - ⁹Be at LNS Catania
- •Experimental results
- Comparison with the calculations
- •Summary and outlook

Reaction studies with halo nuclei at low energy.

INTEREST: elastic scattering and reactions in collision induced by halo and weakly bound nuclei helps to better understand the continuum. Many papers have appeared in the last few years where this topic has been studied theoretically.

EXPERIMENTAL REQUIREMENTS: experimentally detailed elastic scattering angular distributions (good angular resolution) as well as other open reaction channels must be measured (large solid angle coverage).

Experimental results obtained mainly with the 2n-halo ⁶He beam on several targets

General observations:

Dumping of elastic scattering angular distribution
 Large total reaction cross sections
 Large cross-section for direct processes, saturating most of the σ_R

Elastic scattering angular distribution with ⁶He beam

A.M. Sanchez Benitez et al. NPA 803,36,(2008)

O.M. fit of elastic A.D. Large diffuseness of immaginary part needed .

December 8-10, 2010

Isolde Workshop 2010

December 8-10, 2010

Isolde Workshop 2010

⁶He+⁶⁴Zn: α -particle angular distribution

A. Di Pietro INFN-LNS

cross-section

of the reaction

⁶He+⁶⁵Cu: 1*n* and 2*n* transfer reaction @ SPIRAL

α - γ -n coincidence measurement

A. Chatterjee et al. PRL 101, 032701 (2008)

Large cross-section for the 2n transfer. Qualitative agreement with: P. A. DeYoung *et al.*, *Phys. Rev. C* 71, 051601(R) (2005)

December 8-10, 2010

Isolde Workshop 2010

Experiments with ¹¹Be beam

Fragmentation beam => large beam energy spread => results suffer from the beam quality.

$^{11}\text{Be} + ^{209}\text{Bi}$

Mazzocco et al. Eur. Phys. J. Special Topics 150, 37 (2007)

December 8-10, 2010

Isolde Workshop 2010

Study of the collisions 9,10,11 Be+ 64 Zn at E_{cm} \approx 24.5 MeV.

Main aims : elastic scattering, σ_R

⁹Be @ INFN LNS (Catania)

^{10,11}Be @ REX-ISOLDE (CERN)

December 8-10, 2010

Isolde Workshop 2010

⁹Be+⁶⁴Zn experiment @ LNS Catania

5 Δ E-E Telescopes Δ E: 10 µm surface barrier Si detectors E: 500 µm surface barrier Si detectors

OM fit ⁹Be+⁶⁴Zn σ_R ≈ 1100 mb In agreement with Phys. Rev. C71,034608,(2005)

December 8-10, 2010

Isolde Workshop 2010

^{10,11}Be+⁶⁴Zn @ REX ISOLDE

Experimental set-up:

6 Si detector telecopes:

ΔE: 50 μm, 50x50 mm² DSSSD detectors
16 +16 strips (256 detector pixels each detector)
E: 1500 μm 50x50 mm² single pad Silicon detectors

Detectors inside the chamber

Isolde Workshop 2010

Rutherford scattering to verify the detector geometry

Elastic scattering angular distributions

 σ_R^{9} Be $\approx 1.1b \sigma_R^{10}$ Be $\approx 1.25b$

Isolde Workshop 2010

December 8-10, 2010

Elastic scattering angular distributions

December 8-10, 2010

Isolde Workshop 2010

$$^{11}\text{Be} + ^{64}\text{Zn}$$

A. Di Pietro et a. Phys. Rev. Lett. 105,022701(2010)

December 8-10, 2010

Isolde Workshop 2010

¹¹Be Optical Model analysis:

Adopted procedure:

volume potential responsible for the core-target interaction obtained from the ¹⁰Be+⁶⁴Zn elastic scattering fit.
 a complex DPP is added. The DPP potential is a surface term having the shape of a W-S derivative with a very large diffuseness.

¹¹Be diffuseness parameter of the DPP potential: $a_i=3.5$ fm

The long range part of the OP due to coupling to break-up \Rightarrow damping of elastic cross-section at all angles for which the nuclear interaction is felt.

Results in agreement with A.Bonaccrso and F.Carstoiu NPA 706(2002)322

December 8-10, 2010

Isolde Workshop 2010

Absorption in high partial waves causes cross-section to fall below Rutherford at forward scattering angles.

18O + 184Wa90MeV W.Love et al. Nucl.Phys.A291(1977)183

^{9,10,11}Be+⁶⁴Zn

 ⁹ Be+ ⁶⁴ Zn
 $^{10}\text{Be} + ^{64}\text{Zn}$
$^{11}\text{Be} + ^{64}\text{Zn}$

December 8-10, 2010

Isolde Workshop 2010

Effect of coupling to Coulomb dipole break-up as a function of the target charge for ⁶He induced collision at energy around the barrier. Y. Kucuk et al. PRC 79(2009)067601

—⁶Li+A ----⁶He+A

A. Di Pietro INFN-LNS

Isolde Workshop 2010

December 8-10, 2010

Which processes are contributing to the large reaction cross-section in the ¹¹Be case?

December 8-10, 2010

Isolde Workshop 2010

¹¹Be+⁶⁴Zn BU/Transf. contribution

 $\sigma_{\text{BU/TRANSF}} \approx 1.1 \text{b}$

A. Di Pietro et a. Phys. Rev. Lett. 105,022701(2010)

Isolde Workshop 2010

The collisions 9,10,11 Be + 64 Zn have shown:

✓ Damping of elastic cross-section for the reaction induced by the ¹¹Be nucleus when compared with both ⁹Be (S_n =1.67 MeV) and ¹⁰Be (S_n =6.8MeV).

 \checkmark Surface type DPP with large diffuseness needed to fit the ¹¹Be data.

✓ The total reaction cross-section for ¹¹Be induced reaction is much larger than for the other two Be isotopes $\sigma_{rea}(^{11}Be) > 2 \sigma_{rea}(^{9,10}Be)$.

✓ Evidence for the presence of a large yield of transfer and/or breakup events in the ¹¹Be induced collision with a corresponding cross section $\sigma_{TR/BU} \sim 1$ barn.

A LoI was submitted to the ISOLDE INTC committee to develop a post-accelerated ⁸B beam to extend these type of studies to p-halo nuclei.

L. Acosta, F. Amorini, M.J.G. Borge, A.D., P. Figuera, L.M. Fraile, J.Gomez-Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin, A.M. Moro, A. Musumarra, M.Papa, M.G.Pellegriti, F. Perez Bernal, R.Raabe, G.Randisi, F. Rizzo, D. Santonocito, G.Scalia, V. Scuderi, O. Tengblad, D.Torresi, A. Maira Vidal, D.Voulot, F. Wenander, M.Zadro

INFN-Laboratori Nazionali del Sud and Sezione di Catania, Italy
Dipartimento di Fisica ed Astronomia, Universita' di Catania, Italy
Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita' di Catania, Italy
Departamento de Fisica Aplicada, Universidad de Huelva, Huelva, Spain
Instituto de Estructura de la Materia, CSIC, Madrid, Spain
CERN, Geneva, Switzerland
Departamento de Fisica Atomica, Moleculary Nuclear, Universidad de Sevilla, Spain
Ruder Boskovic Institute, Zagreb, Croatia
Instituut voor Kern-en Stralingsfysica, University of Leuven, Leuven, Belgium

¹¹Be+⁶⁴Zn CDCC calculations

N. KEELEY et al. PHYSICAL REVIEW C 82, 034606 (2010)

December 8-10, 2010

Isolde Workshop 2010