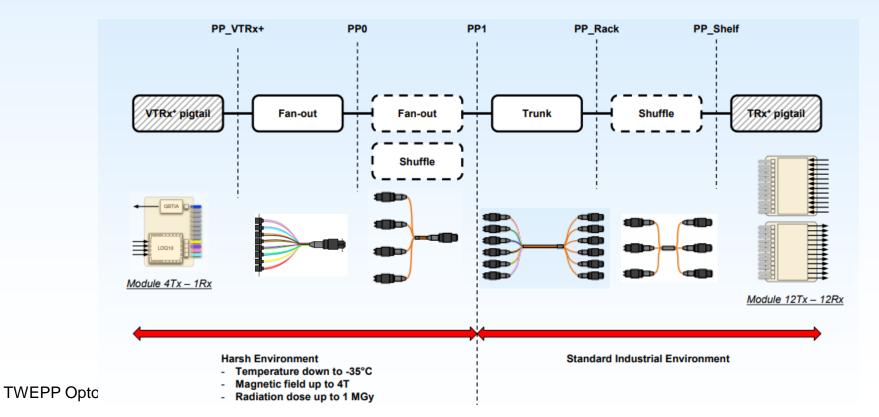
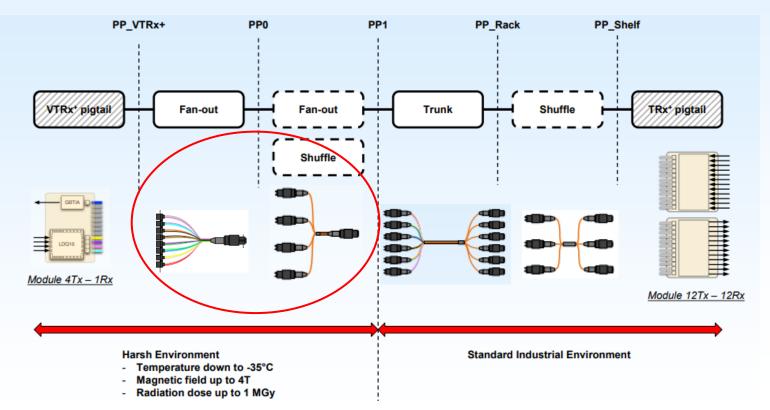


Versatile Link ⁺ Cabling Plant Status and Plans


Francois Vasey, based on material by I. Toccafondo

Cabling plant


- VTRx+ interface (4Tx 1Rx) and Backend interface (12Tx 12Rx) are fixed by VL+ project
- Link length and number of breakpoints are specified by detector
 - Up to 150m, up to 5 breakpoints
 - The shorter the length and the fewer the breakpoints, the better the power margin
- Need aggregation (fan-out) and reshuffling functions in the cabling plant
 - Keep diversity low and manageable
 - Select from «catalogue»

Cabling plant

- VTRx+ interface (4Tx 1Rx) and Backend interface (12Tx 12Rx) are fixed by VL+ project
- Link length and number of breakpoints are specified by detector
 - Up to 150m, up to 5 breakpoints
 - The shorter the length and the fewer the breakpoints, the better the power margin
- Need aggregation (fan-out) and reshuffling functions in the cabling plant
 - Keep diversity low and manageable
 - Select from «catalogue»

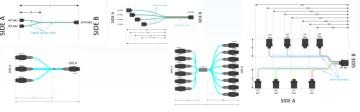
TWEPP OptoWG 27 Sep 2021

Designing and Prototyping the front-end plant

• Objective:

- define a cabling plant optimized to meet the specific requirements of each detector (high radiation resistance, cold environment, high channel density, high data rate...)
- Limit the diversity and decrease the overall cost
- Market survey sent out to firms in August 2019
 - 39 firms contacted, replies from 16 different countries worldwide
 - 8 firms qualified in 2020
 - 4 firms added at request of procurement in 2021
 - Currently still in prototyping/evaluation phase
- Questionnaires sent to detectors in Oct 2019
 - Evaluation of designs and specifications, discussion with detectors during 2020
 - First wave of prototypes -
 - Feed back from detectors and Quality evaluation
- Iteration with detectors in 2021
 - Confirmation of requirements
 - Second wave of prototypes based on feedback from first wave
 - Finalization of cable plant details

francois.vasey@cern.ch


Prototyping, 2nd wave

(Sub)-detector	Naked Fan-out	Fan-out	Shuffle	Total (sub)- detector
ATLAS ITk Pixel	2 + 42	0	1	45
ATLAS ITk Strip (Barrel)		2		
ATLAS ITk Strip (EndCap)	3	0	0	3
ATLAS LAr	12	4	0	16
CMS BTL	4			
CMS ETL	2	0	0	2
CMS ECAL			12	
CMS ITk Pixel	5	0	0	5
CMS OT Strip (Barrel)	16	0	0	16
CMS OT Strip (TEDD)	2	1	0	2
TOTAL component	84 + 4	5 +2	1 +12	90 +1 8



• Over 20 different flavours of naked fan-outs, 4 flavours of fanout patch cords and 7 flavors of shuffle.

Overview of components' families

Components' General Definition

Naked fan-out

Design

- Bundle of fibres with one multi-fibre connector (either MT or MTP) on one side and multiple (N) multi-fibre connectors on the other side.
- The connectors may contain either 12 or 24 fibres.
- Characterized by a total length L and individual branch/cord lengths $L_1, ..., L_N$

Protection

- The component can be left naked, without any protection
- The trunk part of the naked fan-out can be protected by a spiral wrap tube.
- In some specific cases, 3 spiral wrap tube can be used.

SMU

🖧 Fermilab

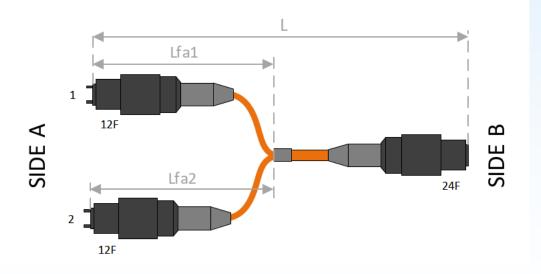
Versatile Link

CERN

Components' General Definition

Fan-out patch cord

Design


- Bundle of fibres with one multi-fibre connector (either MT or MTP) on one side and multiple (N) multi-fibre connectors on the other side.
- The connectors may contain either 12 or 24 fibres.
- Characterized by a total length L and individual branch/cord lengths L₁,...,L_N

Protection

• The component is rugged.

Fan-out box

• Cylindrical: Ø < 5mm

SMU

🛟 Fermilab

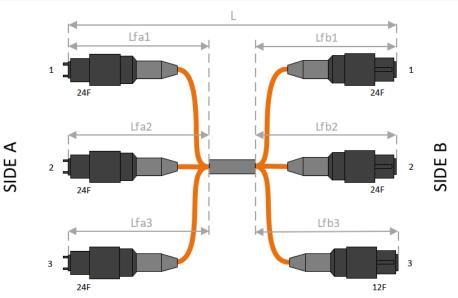
Versatile Link

CERN

Components' General Definition

Fan-out patch cord

Design


- Shuffle patch cords shall consist of multiple multi-fibre cords with multi-fibre connectors at one end, and a shuffle box and multiple multi-fibre cords with multi-fibre connectors at the other end.
- The connectors may contain either 12 or 24 fibres.
- Characterized by the number of individual cords, a total length L and individual branch/cord lengths $L_1,...,L_N$

Protection

• The component is rugged.

Fan-out box

• Cylindrical: Ø < 25 mm

CERN

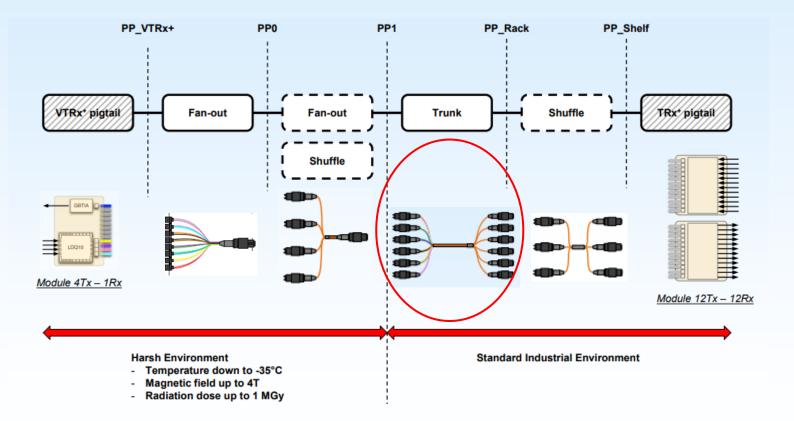
🖧 Fermilab

Versatile Link

Timeline

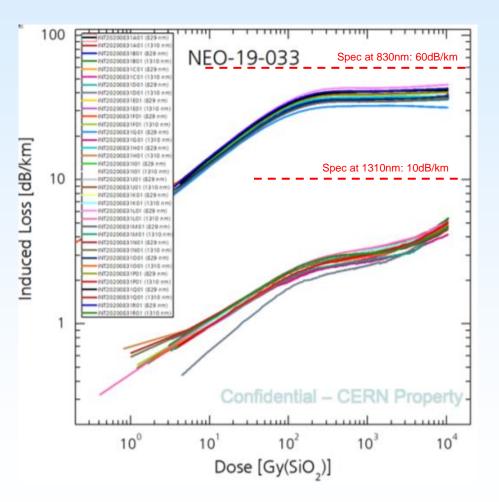
• Q4 2021:

- Delivery and evaluation of prototypes (2nd wave)
- Best possible estimation of production quantities
- Freeze of components Families and Types
- Freeze of qualified companies
- **Q4 2021**: IT dispatch to Qualified Firms.


• Q1-2 2022: contract award.

- Q2-3 2022: the contract can be used.
 - It will be possible to order components and customizing lengths, number and type of connectors.

Trunk Cable


- Will be part of CERN EN-EL standard frame contract
- Prototype evaluations for VL+ project foreseen Q1-2022

Procurement of radiation resistant fibre

CERN Fermilab

- Ordered 800 km of radiation resistant multimode fibres.
- Full quantity received and qualified
- Need to re-assess total fibre need by end-2021 to make sure we have enough

References

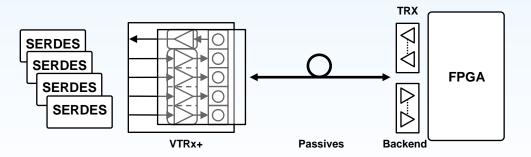
VL⁺ specifications in EDMS

https://edms.cern.ch/ui/#!master/navigator/project?P:1930058715:1767090345:subDocs

Including Samtec product brief and VL+ application note draft

CERN-0000149833 Public access Specifications	
► Info	
More info Documents Structure Used in Acces	s rights History
Create new document Attach document	Detach Auto Link Export to Excel Request access
🔲 # 🔺 Id	Title
🔲 10 1719328 v.1 🌟 📜	Versatile Link Plus Specification Part 1 System
🔲 20 1719329 v.1 🌟 🛒	Versatile Link Plus Specification Part 2.1 Front-end Versatile Transceiver
🔲 30 1762899 v.1 🌟 📜	Versatile Link Plus Specification Part 2.2 Back-end Transceiver
🗐 40 1762900 v.1 🌟 📜	Versatile Link Plus Specification Part 2.3 Passive Optical Components
🗐 50 2149674 v.1 🌟 🗮	Versatile Link Plus Application Note
🚺 🖣 Page 1 🛛 of 1 🕨 🔰 🍣	

• VL⁺ Sharepoint site


https://espace.cern.ch/project-Versatile-Link-Plus/SitePages/Home.aspx

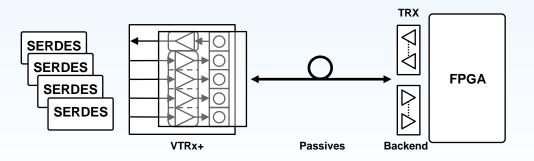
Thank you

https://espace.cern.ch/project-Versatile-Link-Plus

EDMS: CERN-0000149833

TWEPP OptoWG 27 Sep 2021

🙆 SMU


🛟 Fermilab

Versatile Link

(**()**)

CÉRN

Backups

🙆 SMU

🛟 Fermilab

Versatile Link⁺

CÉRN

5.1 Power Budget

- Upstream Power Budget is tight. Depending on link length and radiation environment, extended grade components must be used.
- Best margin achieved for short links with few breakpoints

	Upstream VTx+_Rx (10Gbps)		Downstream Tx_VRx+ (2.5Gbps)	
	Standard Grade	Extended Grade	Standard Grade	Extended Grade
Tx OMA	> -5.2 dBm	> -5.2 dBm ³	> -5.6 dBm	>-1.6 dBm
Rx sensitivity	< -11.5 dBm < -12.5 dBm		< -13.1 dBm	< -13.1 dBm ³
Power budget	> 6.3 dB > 7.3 dB		> 7.5 dB	> 11.5 dB
Fiber attenuation (50m/100m/150m)	<0.125 dB / 0.25 dB / 0.375 dB		< 0.375 dB	
Insertion loss	< 1.75 dB		< 1.75 dB	
Link penalties ¹ (50m/100m/150m)	1.7 dB / 1.9 dB / 2.3 dB		< 0.5 dB	
Tx radiation penalty	1.0 dB		NA	
Rx radiation penalty	NA		< 1.4 dB	<5.4 dB
Fiber radiation penalty	< 0.5 dB	<1.5 dB	< 0.5 dB	<1.5 dB
Margin (50m/100m/150m)	1.225/0.9/0.375 dB	1.225/0.9/0.375 dB	> 2.975 dB	> 1.975 dB
Coding Gain ²	1dB		1 dB	

Table 5.1 Versatile Link Plus Power Budget

Note 1: The link lengths documented here represent the actual link length where the first 7 meters consists of radiation hard OM2 fiber. For example, the length of 100 m is an overall link length of 100, which includes 7 m of OM2 fiber followed by 100 - 7 = 93 m of OM3 fiber.

Note 2: Error coding scheme, for example, the IpGBT FEC coding will result in an additional gain in margin.

Note 3: VTRx+ devices targeting extended grade should be selected to have high coupling efficiency and low VCSEL forward voltage to ensure robust operation to extreme fluence levels.

TWEPP OptoWG 27 Sep

1. Consider VTRx+ environment

Tolerance level	Dose and fluence (1Mev neutron equivalent)	
Standard Grade	$\begin{array}{c} 1 \text{ MGy} \\ 1.7 \text{ x } 10^{14} \text{ neutrons/cm}^2 \\ 1 \text{ x } 10^{14} \text{ hadrons/cm}^2 \end{array}$	
Extended Grade	$\begin{array}{c} 1 \text{ MGy} \\ 1 \text{ x } 10^{15} \text{ neutrons/cm}^2 \\ 1 \text{ x } 10^{15} \text{ hadrons/cm}^2 \end{array}$	

If fluences at VTRx+ position are:

- a. above standard grade levels > select Extended Grade
- b. at/ or below standard grade levels: move to step 2

2. Consider Fibre environment

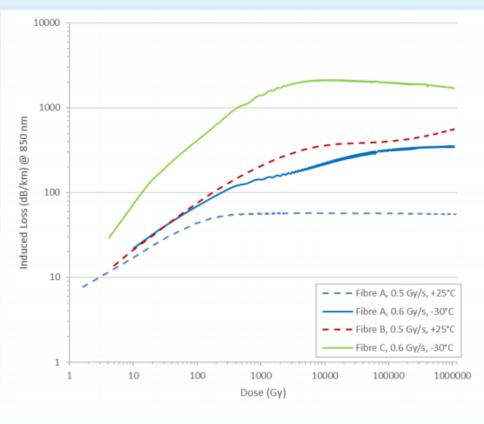
calculate Radiation Induced Attenuation (RIA) in fibre (choice of standard and rad hard fibre types)

a. If RIA is below 0.5dB > select Standard Grade

b. If RIA is above 0.5dB > select Extended Grade

- detector ionising radiation map
- fibre route and patch panel locations
- Position of Cold / Warm transition (if applicable)

To determine fibre type(s), calculate total RIA, and select VL+ grade

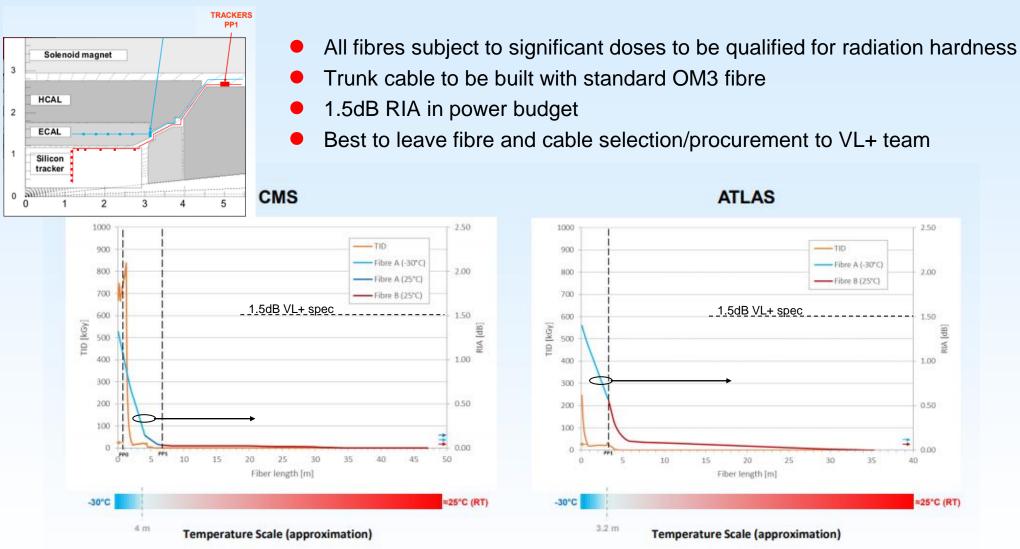

francois.vasey@cern.ch

^{3.} If unsure, contact VL+ team with:

4.3 Fibre radiation resistance

- Radiation Induced Attenuation is rate and temperature dependent
 - Must be prudent with choice of fiber
 - Qualification tests must be performed in all conditions
- Commercial Rad-Hard fibre (fibre A) is not OM3
 - Can only be used for short lengths

Optical fibre specification:


		Fibre A	Fibre B	Fibre C
Bandwidth		OM2	OM3	OM3
Attenuation (w/o radiation)	850 nm 1300 nm	≤ 2.5 dB/km ≤ 0.5 dB/km	≤ 2.4 dB/km ≤ 0.6 dB/km	≤ 2.3 dB/km ≤ 0.6 dB/km
Fibre profile		Graded Index	Graded Index	Graded Index
Core dopant		Fluorine	Germanium	Germanium
Cladding dopant		Fluorine	Fluorine	Fluorine

Radiation Induced Attenuation (dB/km):

Dose	Fibre A (+25°C)	Fibre A (-30°C)	Fibre B (+25°C)	Fibre C (-30°C)
1 kGy	56	142	205	1250
10 kGy	57	220	360	2050
100 kGy	57	310	405	2000
1 Mgy	56	350	555	1500

4.4 Cumulative Radiation Induced Attenuation

→ Total RIA ≈ 1.32 dB TWEPP OptoWG 27 Sep 2021 france

francois.vasey@cern.ch

→ Total RIA ≈ 1.40 dB