Common SoC design platform and enablers

TWEPP 2021 Microelectronics user group meeting 05.10.2021

Risto Pejašinović Marco Andorno Alessandro Caratelli Kostas Kloukinas

Motivation

Survey of Open-Source solutions

SoC platform selection status & plans

- Meet the challenges of future Front-End ASICs
 - Rapidly increasing logic complexity (among other)
 - Use of "digital centric" advanced technology nodes (28nm and beyond)
- On-detector data processing capability
 - Reducing the bandwidth of the optical links
- Reduce ASIC Development time and expedite Verification phase
 - Higher abstraction design level reusing verified common IP blocks
 - RTL-based designs lack portability and scalability across applications
- Reprogrammable functions
 - Functionality can be modified to match the field application requirements
 - Possibility to fix some bugs after tape-out

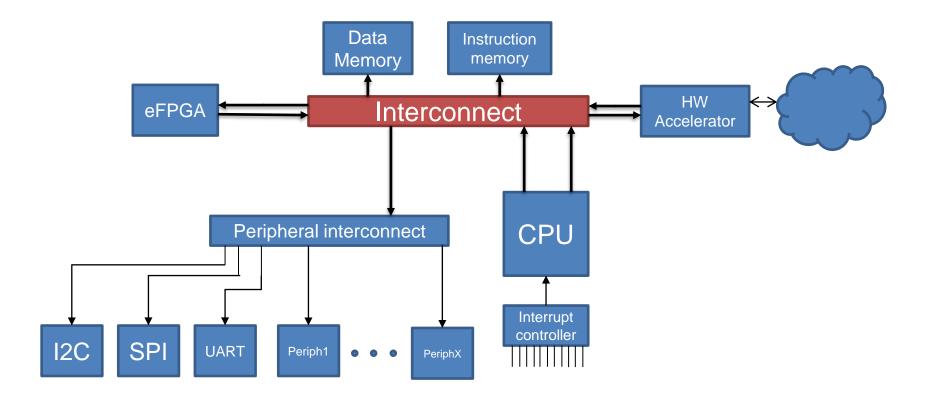
SoC design platform and enablers

- System on Chip in the industry
 - Big momentum in the industry towards SoC
 - Focusing more on developing SW than HW

SW vs HW

Pros:

- Shorter development time
- Possibility to fix bugs after tape-out
- Great amount of SW libraries for many applications


Cons:

- Custom HW approach is more flexible
- Better performance and energy efficiency possible in a custom hardware design

- Provide a flexible SoC platform to the designers
 - Scripted peripheral generation, interconnect generation...
- Provide software infrastructure for the SoC
 - HAL libraries and drivers for provided IP blocks and peripherals
 - Auto generation of C libraries for auto generated peripheral register files
- Standardize a Radiation Hard interconnect
 - Facilitate easier reuse of the IP blocks
 - Verification environments for the IP blocks respecting the protocol
 - Protocol checker VIP
- Radiation hardened CPU implementation

- Open source ISA, many open source implementations
- ISA designed for simplicity, "easy" to implement
- Very likely to take over various areas of CPU market
- Funded and developed by many big companies
- No license limitation, no vendor royalties
- Profit from community contributions

C SKY 22 aselsan BITMAIN AN DELPHIN GOWIN : CSEM PANGO Hill SiFive TE Tortuge SHC socuedies ----可应用于所有的计算设备的开窗,可把展的指令如 NVORKS IMPeras imt. 🔅 INTRINSICIO Cādence 🔤 NETRONGME NSI-TEXE STATE DEVER dxcorr DECOSM EMDALO TECHNOLOGIES Hewlett Packard galois 🔕 Minima 🖓 UBILITE OIDT ZASHLENG expressiogic antmicro @ surecore PertxLab uo TECH IP bluespec OCOTTUS @ Exercisio

SAMSUNG E

ANDES

QUALCOMM Google Trubia IBM Rambus (Acamer Account

A.A. Mellanov

Not all RiscV cores are with an open license

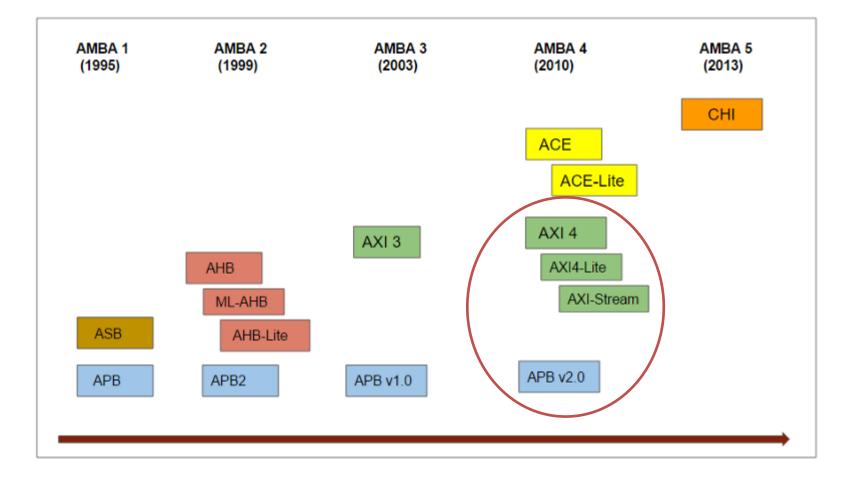
Blockstream

- EH1, EL2, EH2 from Western Digital (SV)
- VexRiscv (SpinalHDL)
- Rocket from UC Berkley (Chisel)
- PicoRV32 (Verilog)
- Zero-riscy (Ibex), RI5CY from ETH Zurich (SV)
- XuanTie CPUs from T-Head (Alibaba)
- SiFive CPUs from the creators of RiscV
- Many others...

- Apache 2.0
- MIT
- BSD
- ISC
- Apache 2.0, Solderpad
- Commercial license
- Commercial license

- SweRVolf for WD cores
- Briey SoC from SpinalHDL
- Rocket Chip from UC Berkley
- PicoSoC with PicoRV32
- Pulpissimo, Pulpino, Pulp (ETH)
- LowRISC by LowRISC
- Litex support multiple CPUs
- Many others...

- Apache 2.0
- MIT
- BSD
- ISC
- Solderpad HW license
- BSD
- BSD


Standardized interconnect bus

- Radiation hard interconnect
- Scripted generation and connection of peripherals
- Protocols Wishbone, AMBA (AXI, APB)

IP block development

- Library of IP blocks
- Standard IP blocks (I2C, SPI, UART, GPIO...)
- Hardware accelerators (sorting algorithms, matrix multipliers...)
- Automatic register file generation for the IP block
- Easy integration on the standardized interconnect

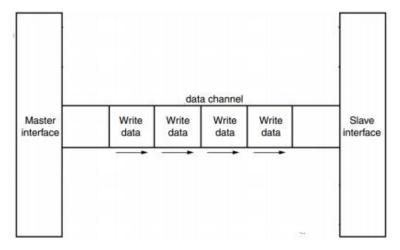
- Not all the signals are needed
- Possible to simplify
- High performance protocol
- 5 separate channels
- Separate read and write

Global	Write	Write	Write	Read	Read
Signals	Address	Data	Return	Address	Return
ACLK	AWVALID	WVALID	BVALID	ARVALID	RVALID
ARESETN	AWREADY	WREADY	BREADY	ARREADY	RREADY
	AWADDR	WDATA	BRESP	ARADDR	RRESP
	AWPROT	WSTRB		ARPROT	RDATA
	AWID		BID	ARID	RID
	AWLEN	WLAST		ARLEN	RLAST
	AWSIZE			ARSIZE	
	AWBURST			ARBURST	
	AWLOCK			ARLOCK	
	AWCACHE			ARCACHE	
	AWQOS			ARQOS	
	AWUSER	WUSER	BUSER	ARUSER	RUSER

Burst transfers

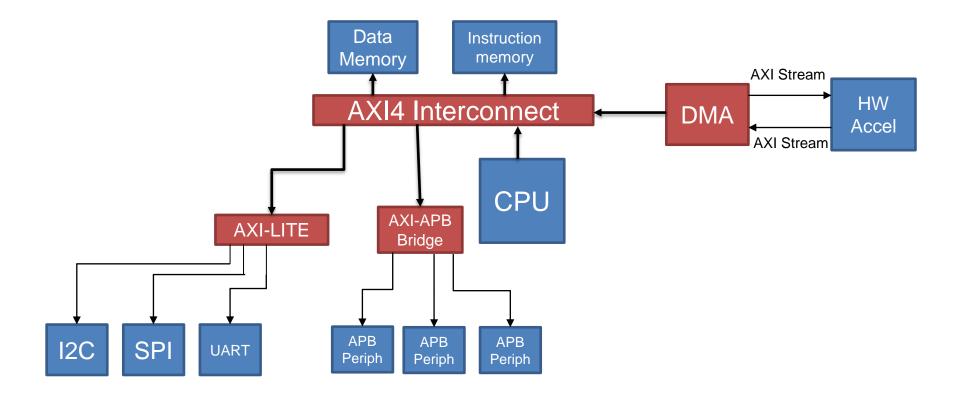
- Simplified AXI4
- Bursts are only 1 beat
- Suitable for peripherals
- Removed many of the signals from AXI4
- Still memory mapped

Write address channel	Write data channel	Write response channel	Read address channel	Read data channel
AWVALID	WVALID	BVALID	ARVALID	RVALID
AWREADY	WREADY	BREADY	ARREADY	RREADY
AWADDR	WDATA	BRESP	ARADDR	RDATA
AWPROT	WSTRB		ARPROT	RRESP

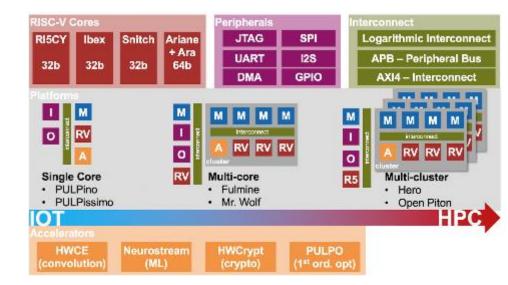


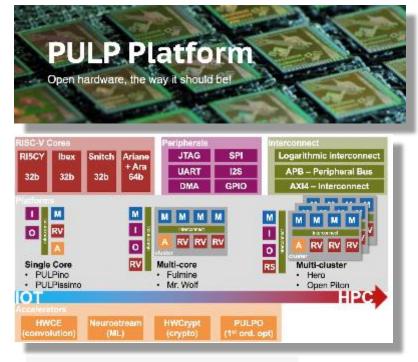
- Simple interface for low speed peripherals
- Non-pipelined
- Every transfer 2 cycles
- Need a bridge to AXI
- Easier to write a peripheral than the other protocols

Signals		
PCLK	CLK	
PRESETn	RESET	
PADDR	Address	
PWDATA	Data	
PRDATA	Read Data	
PSELx	Select slave	
PENABLE	Enable	
PWRITE	Write (1), Read (0)	
PREADY	Slave wait state	
PSLVERR	Succes (0), Fail (1)	



- One way flow from Master to Slave
- Data-intensive applications
- Not memory mapped
- Need a DMA to connect to AXI interconnect
- Suitable for HW accelerators that process a data stream.

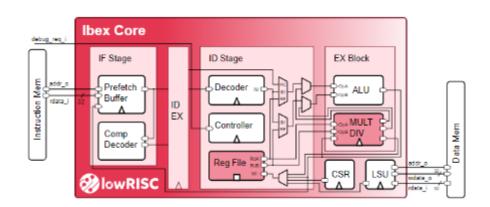

Signal	Mandatory
ACLK	Yes
ARESETn	Yes
TVALID	Yes
TREADY	Yes
TDATA	Yes
TKEEP	No
TSTRB	No
TLAST	No
TIME	No
TDEST	No
TUSER	No



- Developed by ETH Zurich
- Broad range of RISCV cores
- Several SoC platforms
- Support cluster architecture
- Custom RiscV extensions
- Written in SV
- We have a good communication with Pulp team from ETH

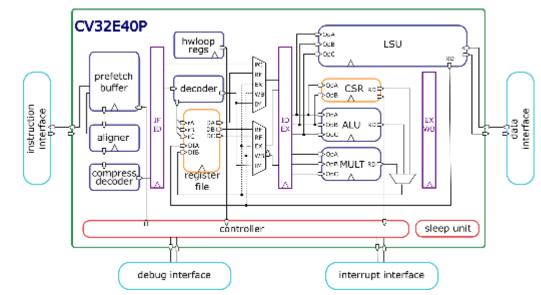
ETH-Zurich R&D activities

PULP Features


- efficient implementations of RISC-V cores. These include:
 - > 32 bit 4-stage core CV32E40P (formerly RISCY)
 - 64 bit 6-stage CVA6 (formerly Ariane)
 - 32-bit 2-stage lbex (formerly Zero-risey)
- complete systems based on:
 - single-core micro-controllers (PULPissimo, PULPino)
 - multi-core IoT Processors (OpenPULP)
 - multi-cluster heterogeneous accelerators (Hero)
- open-source SolderPad license
 - a perpetual, worldwide, non-exclusive, no-charge, royalty-free, Irrevocable license
- rich set of peripherals
- I2C, SPI, HyperRAM, GPIO

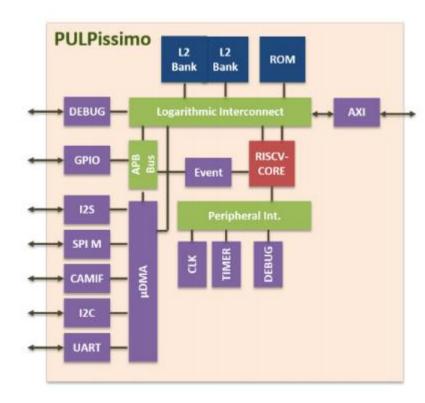
The Parallel Ultra Low Power (PULP) Platform

- joint effort between the <u>Integrated Systems</u> <u>Laboratory (IIS)</u> of ETH Zürich and <u>Energy-efficient</u> <u>Embedded Systems (EEES)</u> group of the University of Bologna in 2013 to explore new and efficient architectures for ultra-low-power processing.
- Aim: to develop an open, scalable hardware and software research and development platform for low power applications
 - Single core microcontroller units
 - Parallel ultra low power programmable architectures
- Open-source approach
 - Based on the open-source RISC-V instruction set architecture
- PULP Team
 - Prof. Luca Benini
 - Frank K. Gürkaynak
 - and many more....https://pulp-platform.org/team.html

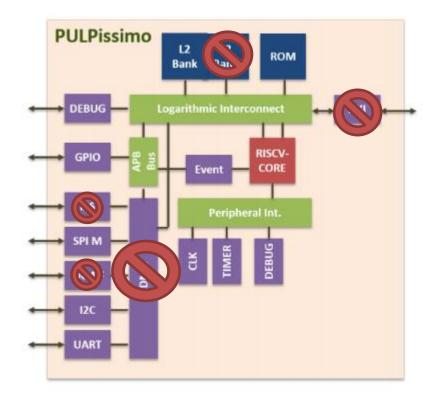


- Minimal RiscV core, suitable for control algorithms
- Maintained by LowRISC and named Ibex
- 2 stage pipeline
- RV32IMC instruction set
- No PULP extensions

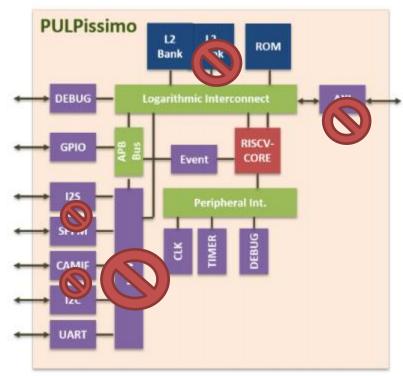
- DSP application oriented
- Maintained by OpenHW group under the name CV32E40P
- 4 stage pipeline
- With Xpulp extension for performance and efficiency
- RV32IMFCXpulp extensions



- GNU compiler toolchain available
- Supports newlib (embedded) and glibc (linux) libraries
- Linux kernel
- U-Boot
- SPIKE Risc-V ISA Simulator
- QEMU
- OpenOCD
- Several Linux distributions
- FreeRTOS, Zephyr...
- Many more...
- Pulp CPUs have custom extensions called XPulp



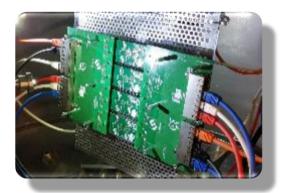
- ZeroRiscy or RI5CY
- Interleaved memory and cluster interconnect
- Custom Logarithmic interconnect for memory, CPU, cluster...
- Peripherals connected to a monolithic uDMA
- Extendible AXI interconnect for peripherals
- APB interconnect for peripherals



- Remove the uDMA and add AXI compatible peripherals
- Remove interleaved memories, keep a simple memory architecture
- External clock instead of FLL
- Remove cluster infrastructure
- Possibly replace the logarithmic interconnect with AXI
- Use ZeroRiscy as a CPU
- JTAG master, SPI, I2C, UART, GPIO
- Remove the old debug unit
- Triple module redundancy radiation hardening

- Pulpissimo tested on the Genesys 2 FPGA board
- Tested the Pulp toolchains, and verified that the compiled code runs on real hardware
- SoC is modified according to our needs.
- Some modifications are still in progress
- In process of implementing Pulpissimo on 28nm with CERN design flow

- Submission on 16. December
- Non radiation hard SoC
- Modified Pulpissimo
- Radiation tolerant SoC planned next year
- Intent to create a simple usable Microcontroller


- SoC RAdiation Tolerant EcoSystem
- Radiation tolerant SoC builder
- Radiation tolerant CPU
- Standardized interconnect based on AMBA standards
- Library of verified radiation tolerant IPs (I2C, SPI, UART, JTAG...)
- Automatically generated AXI peripherals
- Custom Hardware accelerators

KU Leuven Research Activities

- High-Performance fault-tolerant RISC-V microprocessors for harsh environments.
 - > Error detection and correction at the architecture level
 - Digital implementation with error detection flipflops
 - Instruction replay for correction
- Fault tolerance systolic array Deep Neural Network (DNN) accelerator.
 - Effect of radiation on the classification accuracy and functionality of the accelerator
 - Implement area efficient fault tolerance methods
- Impact of aging degradation on the radiation susceptibility of integrated circuits in advanced FD-SOI technology nodes.
 - Design test vehicles while take into consideration the increasing stochastic nature of degradation mechanisms in advanced nodes: Programmable Arrays.
 - Model the coupled effect of radiation and aging mechanisms on FD-SOI technology

KU LEUVEN

Team leader: Prof. Jeffrey Prinzie (jeffrey.prinzie@kuleuven.be) Principal researchers: Karel Appels, Mohamed Mounir, and Naïn Jonckers

Heavy-ion irradiation test at RADEF for ProArray Chips: a Custom designed test vehicle in 28 nm FD-SOI

Thank you!!