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LEP, LHC: SM describes final states of particle collisions 
precisely                                                   [ATLAS and CMS public results]

No proven sign of new physics beyond SM at colliders* 

[ATLAS and CMS public results]

SM vacuum is metastable 

[Bezrukov et al, arXiv:1205.2893; Degrassi et al, arXiv:1205.6497]

*There are some indications below discovery significance (such as lepton flavor 
non-universality in meson decays)                              
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Universe at large scale described precisely by 
cosmological SM: ΛCDM (Ωm =0.3) 

Neutrino flavours oscillate                  

Existing baryon asymmetry cannot be explained by 
CP asymmetry in SM                       

Inflation of the early, accelerated expansion of the 
present Universe                                    [https://pdg.lbl.gov]
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Neutrinos must play a key role in the quest for BSM theory
with non-zero masses they must feel another force apart from the weak 
one, such as Yukawa coupling to a scalar, which requires the existence of 
right-handed neutrinos

Simplest extension of GSM=SU(3)c×SU(2)L×U(1)Y is to 
G=GSM×U(1)z 

     renormalizable gauge theory without any other symmetry
Fix z-charges by requirement of

gauge and gravity anomaly cancellation and
gauge invariant Yukawa terms for neutrino mass generation
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Particle content of SM+SW 
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Expected consequences

12

Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                          
-                                                                               [Kärkkäinen and ZT, arXiv:2105.13360] 

The lightest new particle is a natural candidate for WIMP dark matter if it is 
sufficiently stable                                                            [Seller et al, arXiv:2104.11248]

Diagonalization of neutrino mass terms leads to the PMNS matrix, which in 
turn can be the source of lepto-baryogenesis                        (under investigation)

The second scalar together with the established BEH field may be the 
source of accelerated expansion now and inflation in the early universe                                              
-                                                     [Péli et al, arXiv:1911.07082 and also under investigation] 

Extensive phenomenological studies are required to confront the predictions 
of the model with measurements, and decide whether or not these promises 

are fulfilled                                                                                          
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13

propose an extension of the particles zoo of the standard model with three right-handed
Dirac neutrinos‡ and the gauge symmetry of the standard model Lagrangian GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to GSM ⇥ U(1)Z . Such extensions have already been consid-
ered in the literature extensively§. In particular, it was shown that the charge assignment
of the matter fields is constrained by the requirement of anomaly cancellations up to two
free charges []. To define the model completely, one has to take a specific choice for these
remaining free charges. In this article we propose a new mechanism for the generation of
neutrino masses that fixes the values of the U(1)Z charges up to an overall scale that can
be embedded in the U(1)Z coupling.

2 Definition of the model

2.1 Fermion sector

We consider the usual three fermion families of the standard model extended with one
right-handed Dirac neutrino in each family.¶ We introduce the notation
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for the quark fields  q and for the lepton fields  l. In Eq. (2.1) L and R denote the left and
right-handed projections,

 L/R ⌘  ⌥ =
1

2
(1⌥ �5) ⌘ PL/R , (2.2)

except for the neutrinos, which di↵er from the charged fermions in the sense that the left and
right-handed fields are not projections of the same field, but denote di↵erent transformation
properties. Then the field content in family f (f = 1, 2 or 3) consists of two quarks, Uf ,
Df , a neutrino ⌫f and a charged lepton `f where Uf is the generic notation for the u-type
quarks U1 = u, U2 = c, U3 = t, while Df is that for d-type quarks, D1 = d, D2 = s
and D3 = b. The charged leptons `f can be `1 = e, `2 = µ or `3 = ⌧ and ⌫f are the
corresponding neutrinos, ⌫1 = ⌫e, ⌫2 = ⌫µ, ⌫3 = ⌫⌧ .

‡
The negative results of the experiments searching for neutrinoless double �-decay make the Majorana

nature of neutrinos increasingly unlikely.
§
For an incomplete set of popular examples and their studies see [?,?,?]

¶
We find natural to assume one extra neutrino in each family although known observations do not

exclude other possibilities.

2
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II. PARTICLE MODEL, MIXINGS AND INTERACTIONS

We consider an extension of the standard model by a U(1)z gauge group with particle content

and charge assignment defined in Ref. [28]. The super-weak model is an economical extension of

the standard model that provides a framework to explain the origin of (i) neutrino masses and

oscillations [29], (ii) dark matter [30], (iii) cosmic inflation and stabilization of the electroweak

vacuum [31], (iv) matter-antimatter asymmetry of the universe. The complete model including

Feynman rules in the unitary gauge was presented fully in Ref. [28]. As we are to compute

one-loop corrections to neutrino masses, we recall the details relevant to such computations,

with Feynman rules in the R⇠ gauge. We generated those Feynman rules with SARAH[32–35]

but here we present simpler forms for the rules needed in our computations to make those more

comprehensive. We also recall some of the conventions that are different in SARAH and the

original definition of the model. We stick to the SARAH conventions throughout this work.[36]

A. Mixing of neutral gauge bosons

The particle content of the standard model is extended by 3 right-handed neutrinos ⌫R, a

new scalar �, and the U(1)z gauge boson B0. As the field strength tensors of the U(1) gauge

groups are gauge invariant, kinetic mixing is allowed between the gauge fields belonging to the

hypercharge U(1)y and the new U(1)z gauge symmetries, whose strength is measured by ✏ in
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4
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where Bµ is the U(1)y gauge field. However, equivalently, we can choose the basis—the con-

vention in SARAH—in which the gauge-field strengths do not mix, while the couplings are given

by a 2⇥ 2 coupling matrix in the covariant derivative
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where y and z are the U(1)y and U(1)z charges. We can parametrize the coupling matrix as
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@ĝyy ĝyz
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@ĝyy ĝyz
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Standard Φ complex SU(2)L doublet and new   
χ complex singlet:

Scalars

14

2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =

✓
�
+

�
0

◆
=

1
p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ

�]⇤D(�)µ
�+ [D(�)

µ
�]⇤D(�)µ

�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D
(s)
µ

= @µ + igL T ·W µ + igY ysBµ + i(g0
Z
zs � g

0
Y
ys)Z

0
µ

(2.12)

and the potential energy

V (�,�) = µ
2
�
|�|

2 + µ
2
�
|�|

2 +
�
|�|

2
, |�|

2
�✓��

�

2
�

2 ��

◆✓
|�|

2

|�|
2

◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|
2
|�|

2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �
2
> 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, � = w =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, (2.15)

provided the conditions

�µ
2
�
> 2��µ

2
�

and �µ
2
�
> 2��µ

2
�

(2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ

2
�
and µ

2
�
are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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in addition to the usual quartic terms, introduces a coupling term ��|�|
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2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition
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With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)
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are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length

p
|�+|2 + |�0|2. The value

of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
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As �+ > 0 and �� < 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
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addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
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The inequalities in (2.16) cannot be satisfied together if both µ
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are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length
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�� > 0. The eigenvalues of the coupling matrix are

�± =
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�� � ��)

1

◆
. (2.17)

As �+ > 0 and �� < 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
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5

B. Mixings of scalar and Goldstone bosons

In addition to the usual SU(2)L-doublet Brout-Englert-Higgs (BEH) field
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A , (II.9)

there is another complex scalar � in the model, with charges specified in [28]. The Lagrangian

of the scalar fields contains the potential energy
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where |�|2 = |�+|2 + |�0|2. In the R⇠ gauge we parametrize the scalar fields after spontaneous

symmetry breaking as
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where v and w denotes the vacuum expectation values (VEVs) of the fields, whose values are
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Using the VEVs, we can express the quadratic couplings as
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The fields h0 and s0 are two real scalars and �� and �� are the corresponding Goldstone

bosons that are weak eigenstates. We shall denote the mass eigenstates with h, s and �Z , �Z0 .

These different eigenstates are related by the rotations
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where ✓S and ✓G are the scalar and Goldstone mixing angles that can be determined by the

diagonalization of the mass matrix of the real scalars and that of the neutral Goldstone bosons.
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in addition to the usual quartic terms, introduces a coupling term ��|�|
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addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
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where ✓S and ✓G are the scalar and Goldstone mixing angles that can be determined by the
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Table 1: Particle content and charge assignment of the super-weak model, where f and c are complex
scalars and the others are Weyl fermions. For SU(3)c⌦SU(2)L the representations, while for U(1)Y ⌦U(1)z

the charges (y and z) of the respective fields are given. Note that for U(1)Y , the eigenvalues of the half
hypercharge operator Y are given.

SU(3)c SU(2)L U(1)Y U(1)z

QL 3 2 1/6 1/6
UR 3 1 2/3 7/6
DR 3 1 �1/3 �5/6
LL 1 2 �1/2 �1/2
NR 1 1 0 1/2
eR 1 1 �1 �3/2
f 1 2 1/2 1
c 1 1 0 �1

where v and w denotes the VEVs of the fields, whose values are

v =
p

2

s
2lc µ2

f �l µ2
c

4lf lc �l 2 , w =
p

2

s
2lf µ2

c �l µ2
f

4lf lc �l 2 , (2.8)

with µf and lf being the usual coefficients of the quadratic and quartic terms of the BEH potential.
Assuming Yukawa interactions between the fermions and scalars, these VEVs provide masses to
the fermions. In particular, the new Yukawa terms

�LSW � 1
2

nRYN(nR)
cc +nRYneabLLafb +h.c. , (2.9)

lead to both Dirac and Majorana mass terms for the neutrinos. In Eq. (2.9) LL is the left-handed
lepton doublet, eab is the Levi-Civita symbol, a and b are SU(2) indices, and the superscript c
denotes the charge conjugate of the field, nc = �ig2n⇤. The first term is gauge invariant provided
the z-charge of the right-handed neutrinos and the new scalar satisfy the relation zc =�2znR.

It is well known that the requirement of cancellation of gauge and gravity anomalies in U(1)
extensions of the standard model lead to the parametrization of the z-charges in terms of two ratio-
nal numbers [?]. In the super-weak model we assume that the left- and right-handed neutrinos have
opposite z-charges. With this choice and a suitable reparametrization of the U(1) couplings gY and
gz, we find that the model is equivalent to a U(1) extension when only the right-handed fermions
are charged under the new U(1) interaction [?]. Have we chosen equal z-charges for the left- and
right-handed neutrinos, we would end up with the well studied U(1)B�L extension.

The remaining unkown parameter can be fixed freely, which sets the normalization of the
coupling. For the sake of convenience, we choose the z-charge of the BEH scalar to be unity. The
charge assignements are then obtained as given in Table 1.

3. Masses of neutrinos

After SSB the terms proportional to the VEVs the Yukawa interactions provide the 3⇥3 Dirac

3
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In addition to the standard Yukawa terms we 
assume neutrino Yukawa terms:  

    that are gauge invariant if 

fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L
⌫

Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c
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◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0

Z
, we set z2 freely. For instance, choosing z2 = 7/6 implies

z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:
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Table 1: Particle content and charge assignment of the super-weak model, where f and c are complex
scalars and the others are Weyl fermions. For SU(3)c⌦SU(2)L the representations, while for U(1)Y ⌦U(1)z

the charges (y and z) of the respective fields are given. Note that for U(1)Y , the eigenvalues of the half
hypercharge operator Y are given.

SU(3)c SU(2)L U(1)Y U(1)z

QL 3 2 1/6 1/6
UR 3 1 2/3 7/6
DR 3 1 �1/3 �5/6
LL 1 2 �1/2 �1/2
NR 1 1 0 1/2
eR 1 1 �1 �3/2
f 1 2 1/2 1
c 1 1 0 �1
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with µf and lf being the usual coefficients of the quadratic and quartic terms of the BEH potential.
Assuming Yukawa interactions between the fermions and scalars, these VEVs provide masses to
the fermions. In particular, the new Yukawa terms

�LSW � 1
2

nRYN(nR)
cc +nRYneabLLafb +h.c. , (2.9)

lead to both Dirac and Majorana mass terms for the neutrinos. In Eq. (2.9) LL is the left-handed
lepton doublet, eab is the Levi-Civita symbol, a and b are SU(2) indices, and the superscript c
denotes the charge conjugate of the field, nc = �ig2n⇤. The first term is gauge invariant provided
the z-charge of the right-handed neutrinos and the new scalar satisfy the relation zc =�2znR.

It is well known that the requirement of cancellation of gauge and gravity anomalies in U(1)
extensions of the standard model lead to the parametrization of the z-charges in terms of two ratio-
nal numbers [?]. In the super-weak model we assume that the left- and right-handed neutrinos have
opposite z-charges. With this choice and a suitable reparametrization of the U(1) couplings gY and
gz, we find that the model is equivalent to a U(1) extension when only the right-handed fermions
are charged under the new U(1) interaction [?]. Have we chosen equal z-charges for the left- and
right-handed neutrinos, we would end up with the well studied U(1)B�L extension.

The remaining unkown parameter can be fixed freely, which sets the normalization of the
coupling. For the sake of convenience, we choose the z-charge of the BEH scalar to be unity. The
charge assignements are then obtained as given in Table 1.

3. Masses of neutrinos

After SSB the terms proportional to the VEVs the Yukawa interactions provide the 3⇥3 Dirac
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after SSB

fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos
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for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0

Z
, we set z2 freely. For instance, choosing z2 = 7/6 implies

z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:
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Table 1: Particle content and charge assignment of the super-weak model, where f and c are complex
scalars and the others are Weyl fermions. For SU(3)c⌦SU(2)L the representations, while for U(1)Y ⌦U(1)z

the charges (y and z) of the respective fields are given. Note that for U(1)Y , the eigenvalues of the half
hypercharge operator Y are given.

SU(3)c SU(2)L U(1)Y U(1)z

QL 3 2 1/6 1/6
UR 3 1 2/3 7/6
DR 3 1 �1/3 �5/6
LL 1 2 �1/2 �1/2
NR 1 1 0 1/2
eR 1 1 �1 �3/2
f 1 2 1/2 1
c 1 1 0 �1

where v and w denotes the VEVs of the fields, whose values are

v =
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with µf and lf being the usual coefficients of the quadratic and quartic terms of the BEH potential.
Assuming Yukawa interactions between the fermions and scalars, these VEVs provide masses to
the fermions. In particular, the new Yukawa terms

�LSW � 1
2

nRYN(nR)
cc +nRYneabLLafb +h.c. , (2.9)

lead to both Dirac and Majorana mass terms for the neutrinos. In Eq. (2.9) LL is the left-handed
lepton doublet, eab is the Levi-Civita symbol, a and b are SU(2) indices, and the superscript c
denotes the charge conjugate of the field, nc = �ig2n⇤. The first term is gauge invariant provided
the z-charge of the right-handed neutrinos and the new scalar satisfy the relation zc =�2znR.

It is well known that the requirement of cancellation of gauge and gravity anomalies in U(1)
extensions of the standard model lead to the parametrization of the z-charges in terms of two ratio-
nal numbers [?]. In the super-weak model we assume that the left- and right-handed neutrinos have
opposite z-charges. With this choice and a suitable reparametrization of the U(1) couplings gY and
gz, we find that the model is equivalent to a U(1) extension when only the right-handed fermions
are charged under the new U(1) interaction [?]. Have we chosen equal z-charges for the left- and
right-handed neutrinos, we would end up with the well studied U(1)B�L extension.

The remaining unkown parameter can be fixed freely, which sets the normalization of the
coupling. For the sake of convenience, we choose the z-charge of the BEH scalar to be unity. The
charge assignements are then obtained as given in Table 1.

3. Masses of neutrinos

After SSB the terms proportional to the VEVs the Yukawa interactions provide the 3⇥3 Dirac
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫R are sterile under the GSM group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)c SU(2)L yj zj zj rj = zj/z� � yj
UL, DL 3 2 1

6 Z1
1
6 0

UR 3 1 2
3 Z2

7
6

1
2

DR 3 1 �
1
3 2Z1 � Z2 �

5
6 �

1
2

⌫L, `L 1 2 �
1
2 �3Z1 �

1
2 0

⌫R 1 1 0 Z2 � 4Z1
1
2

1
2

`R 1 1 �1 �2Z1 � Z2 �
3
2 �

1
2

� 1 2 1
2 z� 1 1

2

� 1 1 0 z� �1 �1

fields introduced in the covariant derivative transform as

T · W µ(x)
G

�! T · W 0µ(x) = U(x)T · W µ(x) U †(x) +
i

gL
[@µ U(x)] U †(x)

Bµ G
�! B0µ(x) = Bµ(x) �

1

gY
@µ�(x)

Zµ G
�! Z 0µ(x) = Zµ(x) �

1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �
1

4
Bµ⌫B

µ⌫
�

1

4
Zµ⌫Z

µ⌫
�

1

4
W µ⌫ · W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @[µB⌫], Zµ⌫ = @[µZ⌫] and W µ⌫ = @[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫

G
�!

U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�
✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0
µ

Z 0
µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)

4

[Dobrescu et al, hep-ph/0212073]
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫R are sterile under the GSM group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.
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4

gauge invariance 
& normalization
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫R are sterile under the GSM group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.
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U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�
✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0
µ

Z 0
µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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In flavor basis the full 6×6 mass matrix reads

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)

9

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)

9



After SSB neutrino mass terms appear

19

In flavor basis the full 6×6 mass matrix reads

so νL massless, but  νL and νR have the same q-numbers, 
can mix, leading to type-I see-saw

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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In flavor basis the full 6×6 mass matrix reads

so νL massless, but  νL and νR have the same q-numbers, 
can mix, leading to type-I see-saw

Dirac and Majorana mass terms appear already at tree 
level by SSB (not generated radiatively)

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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the weak (flavour) eigenstates: 

can be transformed into the basis of νi (i = 1−6) mass eigenstates 
with a 6×6 unitary matrix U:

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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the weak (flavour) eigenstates: 

can be transformed into the basis of νi (i = 1−6) mass eigenstates 
with a 6×6 unitary matrix U:

decomposed into two 3×6 blocks:

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
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MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where
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V ⌫⌫ = CL
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†
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V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0
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MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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the weak (flavour) eigenstates: 

can be transformed into the basis of νi (i = 1−6) mass eigenstates 
with a 6×6 unitary matrix U:

decomposed into two 3×6 blocks:

where UL and UR* are semi-unitary:                      ,                       ,

but 

useful relations collected in the appendix of our paper

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0
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MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as
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=
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A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of
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UL
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◆
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so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-
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super-weak model, in which the new neutral gauge boson Z 0 is much lighter than the Z boson of

the standard model. We have found that in the mass range of MZ0 2 [20, 200]MeV, motivated

by a possible explanation of the relic density of dark matter in the Universe, the relative mass

corrections to the tree-level mass matrix elements do not exceed the per mill level. Hence the

model is stable against higher-order corrections in the neutrino sector, which motivates further

studies to explore the viable parameter space of the model regarding the mixings between the

active and sterile neutrinos [29].
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Appendix A: Some properties of neutrino mass and mixing matrices

In this appendix, we derive some useful relations among the neutrino mass and mixing ma-

trices. The matrix U that diagonalizes the neutrino mass matrix is unitary, hence
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03 13
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from which we obtain the following important relations:

ULU†
L = 13 , URU†

R = 13 (A.2)

and

ULUT
R = U⇤

RU†
L = 03 (A.3)

where 1n denotes the n⇥ n unit matrix. The second unitarity conditions gives

U†U = (U†
L,U

T
R)
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LUL + UT
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Using Eq. (II.35) we derive
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Full diagonalization is cumbersome → can use 
approximate diagonalization in the see-saw limit 

Super-weak phenomenology Zoltán TRÓCSÁNYI

terms mass matrices
MD =

vp
2

Yn , MR =
wp

2
YN (3.1)

where we chose a basis such that the Majorana mass matrix MR is real, positive and diagonal, while
the Dirac mass matrix MD is complex. In flavour basis the full 6⇥6 mass matrix for the neutrinos
can be written as

M0 =

 
03 MT

D
MD MR

!
(3.2)

so the Dirac and Majorana mass terms appear already at tree level by SSB, i.e. not generated
radiatively.

The flavour eigenstates (ne, nµ , nt , nc
R,1, nc

R,2, nc
R,3) can be transformed into the ni (i = 1�6)

mass eigenstates with a 6⇥6 unitary matrix U where the mass matrix is diagonal,

UT M0U = M = diag(m1,m2,m3,m4,m5,m6) . (3.3)

It is helpful to decompose the matrix U into two 3⇥6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (3.4)

so UT = (UT
L ,U

†
R) where both blocks are 6⇥3 matrices. It may be worth emphasizing that in spite

of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary. Useful

relations of these matrices are collected in the Appendix of Ref. [?].
While the full diagonalization in Eq. (3.3) is cumbersome, one can first block-diagonalize the

block mass matrix up to small corrections:
 

Mn 0
0 MN

!
=

 
1 Uas

�U†
as 1

!T  
0 MT

D
MD MR

! 
1 Uas

�U†
as 1

!
⇡
 
�MT

DM�1
R MD 0

0 MR

!
(3.5)

where the matrix Uas = M†
DM�1

R is the active-sterile mixing matrix having elements Uai (a =

e, µ, t , i = 4, 5, 6). In the last step of (3.5) we neglected blocks suppressed in the see-saw limit,
such as the off-diagonal blocks U⇤

asMDUas and its transpose, as well as MDUas and its transpose
as compared to MR. Whether or not such terms are indeed negligible at the physical points can be
justified numerically a-posteriori, once we have numerical estimates for the Yukawa matrices (see
below). For now we assume that �MT

DM�1
R MD and MR are the approximate mass matrices for

active and sterile neutrinos, i.e. the see-saw limit can be applied.
At this point MN is already diagonal, but Mn is not so, so next we diagonalize the light neutrino

mass matrix Mn :
UT

2 MnU2 = Mdiag
n (3.6)

where U2 is a 3⇥3 unitary matrix. Clearly, U2

We have experimental constraints on the upper limits the elements of Mdiag
n [?, ?]. Even if the

tree-level matrix Mdiag
n satisfies those limits, one has to check that the inclusion of loop corrections

to the mass matrix

dM0 =

 
dML dMT

D
dMD dMN

!
= U⇤dMU† (3.7)

4
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so the Dirac and Majorana mass terms appear already at tree level by SSB, i.e. not generated
radiatively.
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of what might be implied by the notation, the matrices UL and U⇤
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relations of these matrices are collected in the Appendix of Ref. [?].
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asMDUas and its transpose, as well as MDUas and its transpose
as compared to MR. Whether or not such terms are indeed negligible at the physical points can be
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below). For now we assume that �MT

DM�1
R MD and MR are the approximate mass matrices for

active and sterile neutrinos, i.e. the see-saw limit can be applied.
At this point MN is already diagonal, but Mn is not so, so next we diagonalize the light neutrino

mass matrix Mn :
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2 MnU2 = Mdiag
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where U2 is a 3⇥3 unitary matrix. Clearly, U2

We have experimental constraints on the upper limits the elements of Mdiag
n [?, ?]. Even if the

tree-level matrix Mdiag
n satisfies those limits, one has to check that the inclusion of loop corrections
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for both V = Z and V = Z 0.

F. Scalar boson – neutrino and Goldstone boson – neutrino interactions

The terms containing the scalar and Goldstone bosons in Eq. (II.32) provide interactions

between those and the neutrinos. These interactions have the same structure with small dif-
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and the right chiral ones are related by complex conjugation, �R
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III. NEUTRINO MASS MATRIX AT ONE-LOOP ORDER

We are interested in the one-loop correction �ML to the tree-level mass matrix of the light
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do not upset them (after diagonalization of the corrected matrix). Here the 3⇥ 3 blocks can be
computed as

dML = U⇤
LdMU†

L, dMD = URdMU†
L, dMR = URdMUT

R . (3.8)

We are especially interested in the correction dML. Its computation is straightforward, but in-
volves highly non-trivial cancellation of the gauge-dependent terms and divergent contributions
(see Ref. [?] for details). The final form of the one-loop correction can be compactly given as

dML =
1

16p2 Â
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2
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v2 F(M2
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2
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v2 F(M2
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)

#
, (3.9)

and can easily be generalized to arbitrary number of U(1) gauge bosons Vk and complex scalars Sk

(see Ref. [?]). In Eq. (3.9) the finite matrix valued function

Fi j(M2) =
6

Â
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(U⇤
L)ia(U†

L)a j
m3

a
M2

ln m2
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M2

m2
a

M2 �1
(3.10)

is of dimension mass and the summation runs over all neutrinos. As the correction is finite, it is
also independent of the renormalization scale. The 2⇥2 rotation matrices ZS and ZG connect the
mass eigenstates of the scalars (h, s) and Goldstone bosons (sZ , sZ0) to their flavour eigenstates h0,
s0 and sf , sc : ✓

h
s

◆
= ZS(qS)

✓
h0

s0

◆
and

✓
sZ

sZ0

◆
= ZG(qG)

✓
sf
sc

◆
(3.11)

where qS and qG are the scalar and Goldstone mixing angles obtained by diagonalizing the mass
matrix of the real scalars and that of the neutral Goldstone bosons. Explicitly, qS can be expressed
with the parameters of the scalar sector, while the Goldstone mixing angle is related simply to the
mixing angle qZ between the massive neutral gauge bosons:

tan(2qS) =� lvw
lf v2 �lcw2 , tan(qG) = tan(qZ)

MZ0

MZ
. (3.12)

Fig. 1 shows the range that the matrix elements Fi j can take as a function of the mass mloop

of the boson in the loop (blue band), assuming normal neutrino mass hierarchy. We have high-
lighted with vertical bands the relevant mass regions where the masses of the bosons in the loop
lie. Following Ref. [?], we require the scalar s to have mass between 144 and 558 GeV needed for
the stability of the vacuum.

The eigenvalues of the F matrices can be large, even larger than 1 eV for tree-level masses in
the allowed range for the active neutrinos, depending on the mass of the boson in the loop and the
tree-level neutrino masses. However, the coupling factors suppress those significantly. For instance,
assuming the active neutrino masses to be O(10�3) eV, the corrections to the matrix elements can
be estimated as

(dML)i j < O(10�7)eV+O(10�21)⇥
✓

MZ0

100 MeV

◆2

Fi j(M2
Z0) . (3.13)

Hence, a rough estimate for the relative correction to active neutrino masses in this region of the
parameter space is O(10�4).
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in the loop (bottom right diagram in Fig. 1) contributes only to AL/R. Thus we compute the

first three graphs explicitly. For a given boson x in the loop, the matrix BL(0) depends on the

mass Mx and also the tree-level masses of the neutrinos {ma}, BL(0) = Bx
L(Mx, {ma}).
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Super-weak phenomenology Zoltán TRÓCSÁNYI

Figure 1: Range of the matrix elements Fi jrepresented by the blue band as a function of the mass mloop
of the boson in the loop. Left plot: mtree

1 = 0.01 eV, mtree
4 = 30 keV, mtree

5 ⇡ mtree
6 = 2.5 GeV. Right plot:

mtree
1 = 0.001 eV, mtree

4 = 7.1 keV, mtree
5 ⇡ mtree

6 = 3.0 GeV.

4. Dark matter candidate

We have firm evidence that dark matter (DM) exists in the Universe []. However, so far all
known evidence is based solely on the gravitational effect of the dark matter on the luminous astro-
nomical objects and on the Hubble-expansion of the Universe, which allows for various sources of
DM. Nevertheless, we know that the Universe is filled with different types of stable SM particles
or bound states of those. Hence, it might seem natural to assume that the DM has particle origin.
The only chance to observe such a particle in the laboratory or in Nature if it interacts with the
SM particles. Such an interaction must be mediated by a field, which is called portal. There are
three portals studied extensively in the literature: (i) vector boson portal when a new gauge boson
is coupled to the SM fermions, for instance through kinetic mixing; (ii) Higgs portal when the BEH
field couples to the DM particles; (iii) neutrino portal when the DM is a fermion (of dimension 3/2)
coupled to the HL operator (of dimension 5/2). With the Z0 boson coupled to the SM particles and
also to the right-handed neutrinos, in the superweak extension of the SM the vector boson portal Z0

with the lightest sterile neutrino n4 as dark matter candidate is a natural scenario.
In order to check if such a scenario is feasible, we have to estimate the abundance of n4 in the

Universe today, for which our starting point is Boltzmann’s equation. It is convenient to define the
comoving number density Yi of particle species i. Starting from the Boltzmann equation, we can
derive the differential equation for the dark matter candidate a. Schematically we have

dYa

dz
µ Â

particles

h
(rate of creation processes of particle a)

� (rate of processes annihilating particle a)
i (4.1)

where z denotes the dimensionless inverse temperature L/T , with L being an arbitrary mass scale.
The rate of a particular process can be estimated by the schematic formula

rate = (cross section or decay rate)⇥ (available initial particle abundance) . (4.2)

6

Super-weak phenomenology Zoltán TRÓCSÁNYI

Figure 1: Range of the matrix elements Fi jrepresented by the blue band as a function of the mass mloop
of the boson in the loop. Left plot: mtree

1 = 0.01 eV, mtree
4 = 30 keV, mtree

5 ⇡ mtree
6 = 2.5 GeV. Right plot:

mtree
1 = 0.001 eV, mtree

4 = 7.1 keV, mtree
5 ⇡ mtree

6 = 3.0 GeV.

4. Dark matter candidate

We have firm evidence that dark matter (DM) exists in the Universe []. However, so far all
known evidence is based solely on the gravitational effect of the dark matter on the luminous astro-
nomical objects and on the Hubble-expansion of the Universe, which allows for various sources of
DM. Nevertheless, we know that the Universe is filled with different types of stable SM particles
or bound states of those. Hence, it might seem natural to assume that the DM has particle origin.
The only chance to observe such a particle in the laboratory or in Nature if it interacts with the
SM particles. Such an interaction must be mediated by a field, which is called portal. There are
three portals studied extensively in the literature: (i) vector boson portal when a new gauge boson
is coupled to the SM fermions, for instance through kinetic mixing; (ii) Higgs portal when the BEH
field couples to the DM particles; (iii) neutrino portal when the DM is a fermion (of dimension 3/2)
coupled to the HL operator (of dimension 5/2). With the Z0 boson coupled to the SM particles and
also to the right-handed neutrinos, in the superweak extension of the SM the vector boson portal Z0

with the lightest sterile neutrino n4 as dark matter candidate is a natural scenario.
In order to check if such a scenario is feasible, we have to estimate the abundance of n4 in the

Universe today, for which our starting point is Boltzmann’s equation. It is convenient to define the
comoving number density Yi of particle species i. Starting from the Boltzmann equation, we can
derive the differential equation for the dark matter candidate a. Schematically we have

dYa

dz
µ Â

particles

h
(rate of creation processes of particle a)

� (rate of processes annihilating particle a)
i (4.1)

where z denotes the dimensionless inverse temperature L/T , with L being an arbitrary mass scale.
The rate of a particular process can be estimated by the schematic formula

rate = (cross section or decay rate)⇥ (available initial particle abundance) . (4.2)

6

Range of the matrix elements Fij represented by the blue band 
as a function of the mass mloop of the boson in the loop.  

Left:                                                     Right:

Super-weak phenomenology Zoltán TRÓCSÁNYI

Figure 1: Range of the matrix elements Fi jrepresented by the blue band as a function of the mass mloop
of the boson in the loop. Left plot: mtree

1 = 0.01 eV, mtree
4 = 30 keV, mtree

5 ⇡ mtree
6 = 2.5 GeV. Right plot:

mtree
1 = 0.001 eV, mtree

4 = 7.1 keV, mtree
5 ⇡ mtree

6 = 3.0 GeV.

4. Dark matter candidate

We have firm evidence that dark matter (DM) exists in the Universe []. However, so far all
known evidence is based solely on the gravitational effect of the dark matter on the luminous astro-
nomical objects and on the Hubble-expansion of the Universe, which allows for various sources of
DM. Nevertheless, we know that the Universe is filled with different types of stable SM particles
or bound states of those. Hence, it might seem natural to assume that the DM has particle origin.
The only chance to observe such a particle in the laboratory or in Nature if it interacts with the
SM particles. Such an interaction must be mediated by a field, which is called portal. There are
three portals studied extensively in the literature: (i) vector boson portal when a new gauge boson
is coupled to the SM fermions, for instance through kinetic mixing; (ii) Higgs portal when the BEH
field couples to the DM particles; (iii) neutrino portal when the DM is a fermion (of dimension 3/2)
coupled to the HL operator (of dimension 5/2). With the Z0 boson coupled to the SM particles and
also to the right-handed neutrinos, in the superweak extension of the SM the vector boson portal Z0

with the lightest sterile neutrino n4 as dark matter candidate is a natural scenario.
In order to check if such a scenario is feasible, we have to estimate the abundance of n4 in the

Universe today, for which our starting point is Boltzmann’s equation. It is convenient to define the
comoving number density Yi of particle species i. Starting from the Boltzmann equation, we can
derive the differential equation for the dark matter candidate a. Schematically we have

dYa

dz
µ Â

particles

h
(rate of creation processes of particle a)

� (rate of processes annihilating particle a)
i (4.1)

where z denotes the dimensionless inverse temperature L/T , with L being an arbitrary mass scale.
The rate of a particular process can be estimated by the schematic formula

rate = (cross section or decay rate)⇥ (available initial particle abundance) . (4.2)

6

Super-weak phenomenology Zoltán TRÓCSÁNYI

Figure 1: Range of the matrix elements Fi jrepresented by the blue band as a function of the mass mloop
of the boson in the loop. Left plot: mtree

1 = 0.01 eV, mtree
4 = 30 keV, mtree

5 ⇡ mtree
6 = 2.5 GeV. Right plot:

mtree
1 = 0.001 eV, mtree

4 = 7.1 keV, mtree
5 ⇡ mtree

6 = 3.0 GeV.

4. Dark matter candidate

We have firm evidence that dark matter (DM) exists in the Universe []. However, so far all
known evidence is based solely on the gravitational effect of the dark matter on the luminous astro-
nomical objects and on the Hubble-expansion of the Universe, which allows for various sources of
DM. Nevertheless, we know that the Universe is filled with different types of stable SM particles
or bound states of those. Hence, it might seem natural to assume that the DM has particle origin.
The only chance to observe such a particle in the laboratory or in Nature if it interacts with the
SM particles. Such an interaction must be mediated by a field, which is called portal. There are
three portals studied extensively in the literature: (i) vector boson portal when a new gauge boson
is coupled to the SM fermions, for instance through kinetic mixing; (ii) Higgs portal when the BEH
field couples to the DM particles; (iii) neutrino portal when the DM is a fermion (of dimension 3/2)
coupled to the HL operator (of dimension 5/2). With the Z0 boson coupled to the SM particles and
also to the right-handed neutrinos, in the superweak extension of the SM the vector boson portal Z0

with the lightest sterile neutrino n4 as dark matter candidate is a natural scenario.
In order to check if such a scenario is feasible, we have to estimate the abundance of n4 in the

Universe today, for which our starting point is Boltzmann’s equation. It is convenient to define the
comoving number density Yi of particle species i. Starting from the Boltzmann equation, we can
derive the differential equation for the dark matter candidate a. Schematically we have

dYa

dz
µ Â

particles

h
(rate of creation processes of particle a)

� (rate of processes annihilating particle a)
i (4.1)

where z denotes the dimensionless inverse temperature L/T , with L being an arbitrary mass scale.
The rate of a particular process can be estimated by the schematic formula

rate = (cross section or decay rate)⇥ (available initial particle abundance) . (4.2)

6



One-loop correction to the Mνdiag matrix

25

coupling factors suppress Fij significantly
e.g., assuming the active neutrino masses to be O(10-3)eV:

Super-weak phenomenology Zoltán TRÓCSÁNYI

do not upset them (after diagonalization of the corrected matrix). Here the 3⇥ 3 blocks can be
computed as

dML = U⇤
LdMU†

L, dMD = URdMU†
L, dMR = URdMUT

R . (3.8)

We are especially interested in the correction dML. Its computation is straightforward, but in-
volves highly non-trivial cancellation of the gauge-dependent terms and divergent contributions
(see Ref. [?] for details). The final form of the one-loop correction can be compactly given as

dML =
1

16p2 Â
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#
, (3.9)

and can easily be generalized to arbitrary number of U(1) gauge bosons Vk and complex scalars Sk

(see Ref. [?]). In Eq. (3.9) the finite matrix valued function

Fi j(M2) =
6

Â
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L)ia(U†

L)a j
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ln m2
a

M2

m2
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M2 �1
(3.10)

is of dimension mass and the summation runs over all neutrinos. As the correction is finite, it is
also independent of the renormalization scale. The 2⇥2 rotation matrices ZS and ZG connect the
mass eigenstates of the scalars (h, s) and Goldstone bosons (sZ , sZ0) to their flavour eigenstates h0,
s0 and sf , sc : ✓

h
s

◆
= ZS(qS)

✓
h0

s0

◆
and

✓
sZ

sZ0

◆
= ZG(qG)

✓
sf
sc

◆
(3.11)

where qS and qG are the scalar and Goldstone mixing angles obtained by diagonalizing the mass
matrix of the real scalars and that of the neutral Goldstone bosons. Explicitly, qS can be expressed
with the parameters of the scalar sector, while the Goldstone mixing angle is related simply to the
mixing angle qZ between the massive neutral gauge bosons:

tan(2qS) =� lvw
lf v2 �lcw2 , tan(qG) = tan(qZ)

MZ0

MZ
. (3.12)

Fig. 1 shows the range that the matrix elements Fi j can take as a function of the mass mloop

of the boson in the loop (blue band), assuming normal neutrino mass hierarchy. We have high-
lighted with vertical bands the relevant mass regions where the masses of the bosons in the loop
lie. Following Ref. [?], we require the scalar s to have mass between 144 and 558 GeV needed for
the stability of the vacuum.

The eigenvalues of the F matrices can be large, even larger than 1 eV for tree-level masses in
the allowed range for the active neutrinos, depending on the mass of the boson in the loop and the
tree-level neutrino masses. However, the coupling factors suppress those significantly. For instance,
assuming the active neutrino masses to be O(10�3) eV, the corrections to the matrix elements can
be estimated as

(dML)i j < O(10�7)eV+O(10�21)⇥
✓

MZ0

100 MeV

◆2

Fi j(M2
Z0) . (3.13)

Hence, a rough estimate for the relative correction to active neutrino masses in this region of the
parameter space is O(10�4).
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In the superweak model the vector boson portal Z' with the lightest 
sterile neutrino ν4 as dark matter candidate is a natural scenario



Relic abundance

27

Can be computed using Boltzmann’s equation
Two possible mechanisms to freeze the abundance:



Relic abundance

27

Can be computed using Boltzmann’s equation
Two possible mechanisms to freeze the abundance:

Freeze-in: 
increases from vanishing initial abundance, but never reaches equilibrium
requires very small couplings



Relic abundance

27

Can be computed using Boltzmann’s equation
Two possible mechanisms to freeze the abundance:

Freeze-in: 
increases from vanishing initial abundance, but never reaches equilibrium
requires very small couplings

Freeze-out: 
DM particle decouples from the other particles in the cosmic soup at some 
temperature Tdec

DM particles of mass m are in equilibrium with others before decoupling (T 
> Tdec ~ m/10)
Decoupling is a result of scattering processes becoming slow compared to 
Hubble expansion, so the estimation of the rate of possible scattering 
processes is needed



Relic abundance

27

Can be computed using Boltzmann’s equation
Two possible mechanisms to freeze the abundance:

Freeze-in: 
increases from vanishing initial abundance, but never reaches equilibrium
requires very small couplings

Freeze-out: 
DM particle decouples from the other particles in the cosmic soup at some 
temperature Tdec

DM particles of mass m are in equilibrium with others before decoupling (T 
> Tdec ~ m/10)
Decoupling is a result of scattering processes becoming slow compared to 
Hubble expansion, so the estimation of the rate of possible scattering 
processes is needed

In the superweak model the vector boson portal Z' with the lightest sterile neutrino 
ν4 as dark matter candidate is a natural scenario



Freeze-out

28

Current exclusion limits on Z’ vector boson portal leave 
room for MZ’ > ~20 MeV



Freeze-out

28

Current exclusion limits on Z’ vector boson portal leave 
room for MZ’ > ~20 MeV
But a sufficiently heavy Z’ can change Big-Bang 
Nucleosynthesis (BBN) dramatically through the production 
of SM particles, so we focus on the mass window with 
upper end below the muon pair production threshold, MZ’  
< ~200 MeV



Freeze-out

28

Current exclusion limits on Z’ vector boson portal leave 
room for MZ’ > ~20 MeV
But a sufficiently heavy Z’ can change Big-Bang 
Nucleosynthesis (BBN) dramatically through the production 
of SM particles, so we focus on the mass window with 
upper end below the muon pair production threshold, MZ’  
< ~200 MeV
DM particles are produced by the decay of Z’ , so we 
consider m4 in [10,50] MeV, hence Tdec is O(1 MeV)
electrons and active neutrinos are abundant in the cosmic 
soup, heavier fermions are negligible.
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Figure 1: Range of the matrix elements Fi jrepresented by the blue band as a function of the mass mloop
of the boson in the loop. Left plot: mtree

1 = 0.01 eV, mtree
4 = 30 keV, mtree

5 ⇡ mtree
6 = 2.5 GeV. Right plot:
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4. Dark matter candidate

We have firm evidence that dark matter (DM) exists in the Universe []. However, so far all
known evidence is based solely on the gravitational effect of the dark matter on the luminous astro-
nomical objects and on the Hubble-expansion of the Universe, which allows for various sources of
DM. Nevertheless, we know that the Universe is filled with different types of stable SM particles
or bound states of those. Hence, it might seem natural to assume that the DM has particle origin.
The only chance to observe such a particle in the laboratory or in Nature if it interacts with the
SM particles. Such an interaction must be mediated by a field, which is called portal. There are
three portals studied extensively in the literature: (i) vector boson portal when a new gauge boson
is coupled to the SM fermions, for instance through kinetic mixing; (ii) Higgs portal when the BEH
field couples to the DM particles; (iii) neutrino portal when the DM is a fermion (of dimension 3/2)
coupled to the HL operator (of dimension 5/2). With the Z0 boson coupled to the SM particles and
also to the right-handed neutrinos, in the superweak extension of the SM the vector boson portal Z0

with the lightest sterile neutrino n4 as dark matter candidate is a natural scenario.
In order to check if such a scenario is feasible, we have to estimate the abundance of n4 in the

Universe today, for which our starting point is Boltzmann’s equation. It is convenient to define the
comoving number density Yi of particle species i. Starting from the Boltzmann equation, we can
derive the differential equation for the dark matter candidate a. Schematically we have

dYa

dz
µ Â

particles

h
(rate of creation processes of particle a)

� (rate of processes annihilating particle a)
i (4.1)

where z denotes the dimensionless inverse temperature L/T , with L being an arbitrary mass scale.
The rate of a particular process can be estimated by the schematic formula

rate = (cross section or decay rate)⇥ (available initial particle abundance) . (4.2)
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The first factor depends on the particle physics model. The initial abundance can be either in or out
of equilibrium. Both factors depend on the temperature. In Eq. (4.2) the cross section refers to the
thermally averaged cross section

hsvMøli µ
Z •

4µ2
ds s(s)(s�4m2

in)
p

sK1

✓p
s

T

◆
(4.3)

where µ = max(min,mout) with the masses of incoming and out going particles. For a decaying
particle of mass m the natural choice for the mass scale L is m itself and the decay rate is simply

hGi= GK1(z)
K2(z)

, (4.4)

with Ki denoting the modified Bessel-function of the second kind. The ratio K1(z)/K2(z) is a
monotone increasing function of z, reaching unity at infinity.

There are two possible ways to reach the current abundance: (i) by free-out or (ii) freeze-in
mechanism. As the latter requires very small – so called feeble – couplings (smaller than 10�10),
it is very difficult test that scenario experimentally. While it is possible in the superweak model
[?], here we focus only on the freeze-out case, which will be testable in the near and medium term
future.

The freeze-out mechanism for a DM species of mass m requires that (i) it decouples from
the other particles in the cosmic soup at some temperature Tdec that is typically Tdec ⇡ 0.1m, and
(ii) it had been in equilibrium with the other species before decoupling. The way in which the
equilibrium distribution had been achieved is unimportant. The only necessary condition is that it
was the case before decoupling. Decoupling is a result of the Hubble-expansion, and occurs when
the rate of scattering processes becomes smaller than the rate of expansion.

The dark matter particles are produced dominantly by the decay of the Z0. Current exclusion
limits on this vector boson portal leave room for MZ0 & 20 MeV [?]. However, a sufficiently heavy
Z0 can change Big-Bang Nucleosynthesis (BBN) dramatically through the production of SM parti-
cles. Hence we focus on the mass window with upper end below the muon air production threshold.
With the choice of these Z0 masses it is assured that their abundance has mostly diminished by the
onset of BBN, and thus their effect will be negligible. Nevertheless, for MZ0 > mp pion produc-
tion is kinematically allowed, which would still affect the proton-neutron conversion rate [?]. In
our analysis we neglected pion production, as Z0 with mass above ⇡ 130 MeV will turn out to be
already excluded by laboratory experiments. As a result, we consider the decays of the Z0 into
electrons, active neutrinos, and n4.

The dark matter candidate species is produced by the decay of the Z0, hence m4 < MZ0/2.
Specifically, we consider m4 2 [10,50]MeV, so the decoupling temperature is Tdec = O(1)MeV. At
this temperature electrons and active neutrinos are abundant in the cosmic soup, while the presence
of heavier fermions are negligible.

An example solution of Eq. (4.1) is shown in Fig. 2 (solid line). The initial condition was given
by the equilibrium comoving number density for n4, and the starting temperature can be chosen
around T0 ' m4/10. At high temperatures the solution follows the equilibrium comoving number
density (dashed black), while at low temperatures the dark matter decouples, and a non-zero relic
density is frozen out. To obtain the correct relic density, one needs a U(1)z coupling that is too
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Figure 2: Example solution to the Boltzmann equation in the freeze-out case. The horizontal line indicates
the relic density corresponding to WDM = 0.265, MZ0 = 30MeV, M1 = 10MeV, gz = 1.06 ·10�3.

large, and is excluded by SM precision measurements. In the freeze-out mechanism decreasing
the coupling, hence the interaction rate increases the relic density. It is essential for the superweak
model DM candidate that the resonance can dominate the integral in the rate (4.3). Exploiting this
condition we can decrease the value of the coupling while keeping the relic density unchanged.

In Fig. 3 we present the parameter space for the freeze-out scenario of dark matter production.
The dark matter particle is assumed to be the lightest right-handed neutrino with mass M1 in this
plot. The required dark couplings gz reproducing WDM = 0.265 are plotted against the mass of the
new gauge boson Z0 for various values of the dark matter mass. The shaded region of the parameter
space is excluded by the ae bound (dashed gray) obtained from the U(1)z contribution to the electron
anomalous magnetic moment [?], and the NA64 bound (dashed light-blue) obtained from missing
energy searches [?]. The steep parts of the lines correspond to the resonant amplification, not yet
excluded by the NA64 constaint. The lightly shaded region MZ0 > mp is not excluded, but it may
be in conflict with the observed proton-to-neutron ratio [?], which we have not taken into account
because the relevant couplings for MZ0 & 130 MeV are already ruled out by NA64.

5. Neutrino benchmarks

While the resonant dark matter production in the freeze-out mechanism is an exciting ex-
planation to the DM puzzle, one might ask whether such neutrinos are at all allowed by known
experimental constraints, or will they be testable within the not too far future. In fact, there are
stringent bounds on the elements of the active-sterile mixing matrix in the mass range 1–80 GeV
of the sterile neutrinos, |Uai|2 . 10�5 (a = e, µ, t , i = 4, 5, 6) [?, ?]. As mentioned before, this
matrix emerges in the diagonalization of the neutrino mass matrix in the see-saw limit. In order to
utilize those constraints, we have to parametrize the active neutrino mass matrix.
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experimental constraints, or will they be testable within the not too far future. In fact, there are
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Figure 2: Example solution to the Boltzmann equation in the freeze-out case. The horizontal line indicates
the relic density corresponding to WDM = 0.265, MZ0 = 30MeV, M1 = 10MeV, gz = 1.06 ·10�3.
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energy searches [?]. The steep parts of the lines correspond to the resonant amplification, not yet
excluded by the NA64 constaint. The lightly shaded region MZ0 > mp is not excluded, but it may
be in conflict with the observed proton-to-neutron ratio [?], which we have not taken into account
because the relevant couplings for MZ0 & 130 MeV are already ruled out by NA64.

5. Neutrino benchmarks

While the resonant dark matter production in the freeze-out mechanism is an exciting ex-
planation to the DM puzzle, one might ask whether such neutrinos are at all allowed by known
experimental constraints, or will they be testable within the not too far future. In fact, there are
stringent bounds on the elements of the active-sterile mixing matrix in the mass range 1–80 GeV
of the sterile neutrinos, |Uai|2 . 10�5 (a = e, µ, t , i = 4, 5, 6) [?, ?]. As mentioned before, this
matrix emerges in the diagonalization of the neutrino mass matrix in the see-saw limit. In order to
utilize those constraints, we have to parametrize the active neutrino mass matrix.

8

Example solution to the Boltzmann equation 
in the freeze-out case. The horizontal line 
indicates the relic density corresponding to

Super-weak phenomenology Zoltán TRÓCSÁNYI

Figure 2: Example solution to the Boltzmann equation in the freeze-out case. The horizontal line indicates
the relic density corresponding to WDM = 0.265, MZ0 = 30MeV, M1 = 10MeV, gz = 1.06 ·10�3.

large, and is excluded by SM precision measurements. In the freeze-out mechanism decreasing
the coupling, hence the interaction rate increases the relic density. It is essential for the superweak
model DM candidate that the resonance can dominate the integral in the rate (4.3). Exploiting this
condition we can decrease the value of the coupling while keeping the relic density unchanged.

In Fig. 3 we present the parameter space for the freeze-out scenario of dark matter production.
The dark matter particle is assumed to be the lightest right-handed neutrino with mass M1 in this
plot. The required dark couplings gz reproducing WDM = 0.265 are plotted against the mass of the
new gauge boson Z0 for various values of the dark matter mass. The shaded region of the parameter
space is excluded by the ae bound (dashed gray) obtained from the U(1)z contribution to the electron
anomalous magnetic moment [?], and the NA64 bound (dashed light-blue) obtained from missing
energy searches [?]. The steep parts of the lines correspond to the resonant amplification, not yet
excluded by the NA64 constaint. The lightly shaded region MZ0 > mp is not excluded, but it may
be in conflict with the observed proton-to-neutron ratio [?], which we have not taken into account
because the relevant couplings for MZ0 & 130 MeV are already ruled out by NA64.

5. Neutrino benchmarks

While the resonant dark matter production in the freeze-out mechanism is an exciting ex-
planation to the DM puzzle, one might ask whether such neutrinos are at all allowed by known
experimental constraints, or will they be testable within the not too far future. In fact, there are
stringent bounds on the elements of the active-sterile mixing matrix in the mass range 1–80 GeV
of the sterile neutrinos, |Uai|2 . 10�5 (a = e, µ, t , i = 4, 5, 6) [?, ?]. As mentioned before, this
matrix emerges in the diagonalization of the neutrino mass matrix in the see-saw limit. In order to
utilize those constraints, we have to parametrize the active neutrino mass matrix.

8

too large



Resonant enhancement

31

in freeze-out mechanism decreasing the coupling, hence the 
interaction rate increases the relic density



Resonant enhancement

31

in freeze-out mechanism decreasing the coupling, hence the 
interaction rate increases the relic density
s-channel resonance in σ(s) dominates the integral in

                  

Super-weak phenomenology Zoltán TRÓCSÁNYI

The first factor depends on the particle physics model. The initial abundance can be either in or out
of equilibrium. Both factors depend on the temperature. In Eq. (4.2) the cross section refers to the
thermally averaged cross section

hsvMøli µ
Z •

4µ2
ds s(s)(s�4m2

in)
p

sK1

✓p
s

T

◆
(4.3)

where µ = max(min,mout) with the masses of incoming and out going particles. For a decaying
particle of mass m the natural choice for the mass scale L is m itself and the decay rate is simply

hGi= GK1(z)
K2(z)

, (4.4)

with Ki denoting the modified Bessel-function of the second kind. The ratio K1(z)/K2(z) is a
monotone increasing function of z, reaching unity at infinity.

There are two possible ways to reach the current abundance: (i) by free-out or (ii) freeze-in
mechanism. As the latter requires very small – so called feeble – couplings (smaller than 10�10),
it is very difficult test that scenario experimentally. While it is possible in the superweak model
[?], here we focus only on the freeze-out case, which will be testable in the near and medium term
future.

The freeze-out mechanism for a DM species of mass m requires that (i) it decouples from
the other particles in the cosmic soup at some temperature Tdec that is typically Tdec ⇡ 0.1m, and
(ii) it had been in equilibrium with the other species before decoupling. The way in which the
equilibrium distribution had been achieved is unimportant. The only necessary condition is that it
was the case before decoupling. Decoupling is a result of the Hubble-expansion, and occurs when
the rate of scattering processes becomes smaller than the rate of expansion.

The dark matter particles are produced dominantly by the decay of the Z0. Current exclusion
limits on this vector boson portal leave room for MZ0 & 20 MeV [?]. However, a sufficiently heavy
Z0 can change Big-Bang Nucleosynthesis (BBN) dramatically through the production of SM parti-
cles. Hence we focus on the mass window with upper end below the muon air production threshold.
With the choice of these Z0 masses it is assured that their abundance has mostly diminished by the
onset of BBN, and thus their effect will be negligible. Nevertheless, for MZ0 > mp pion produc-
tion is kinematically allowed, which would still affect the proton-neutron conversion rate [?]. In
our analysis we neglected pion production, as Z0 with mass above ⇡ 130 MeV will turn out to be
already excluded by laboratory experiments. As a result, we consider the decays of the Z0 into
electrons, active neutrinos, and n4.

The dark matter candidate species is produced by the decay of the Z0, hence m4 < MZ0/2.
Specifically, we consider m4 2 [10,50]MeV, so the decoupling temperature is Tdec = O(1)MeV. At
this temperature electrons and active neutrinos are abundant in the cosmic soup, while the presence
of heavier fermions are negligible.

An example solution of Eq. (4.1) is shown in Fig. 2 (solid line). The initial condition was given
by the equilibrium comoving number density for n4, and the starting temperature can be chosen
around T0 ' m4/10. At high temperatures the solution follows the equilibrium comoving number
density (dashed black), while at low temperatures the dark matter decouples, and a non-zero relic
density is frozen out. To obtain the correct relic density, one needs a U(1)z coupling that is too
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With the choice of these Z0 masses it is assured that their abundance has mostly diminished by the
onset of BBN, and thus their effect will be negligible. Nevertheless, for MZ0 > mp pion produc-
tion is kinematically allowed, which would still affect the proton-neutron conversion rate [?]. In
our analysis we neglected pion production, as Z0 with mass above ⇡ 130 MeV will turn out to be
already excluded by laboratory experiments. As a result, we consider the decays of the Z0 into
electrons, active neutrinos, and n4.
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Excluded by electron g-2

Excluded by NA64

Figure 3: Parameter space for the freeze-out scenario of dark matter production in the supeweak model.

According to Eqs. (3.5) and (3.6) we can write the diagonalized light neutrino mass matrix as

Mdiag
n = UT

2 MnU2 =�UT
2 MT

DM�1
R MDU2 =�v2

2
UT

2 YT
n M�1

R YnU2. (5.1)

To find connection to the neutrino Yukawa matrix, we use the Casas-Ibarra parameterization [?] by
introducing the matrix

R = i
vp
2

M�1/2
R YnU2(Mdiag

n )�1/2 . (5.2)

Utilizing Eq. (5.1), we obtain RT R= 1, i.e. R is an orthogonal matrix. In general it can be complex,
but for the sake of simplicity here we focus only on real R, hence it can be parametrized in terms
of three real numbers si j (sines of the Euler angles) over the unit cube.

We can solve Eq. (5.2) for the neutrino Yukawa matrix, and obtain its adjoint as

Y†
n =

p
2

v
U2(Mdiag

n )1/2(iR†)M1/2
R . (5.3)

The inclusion of sterile neutrinos results in non-unitary active-light neutrino mixing matrix [?, ?],
but the violation of unitarity is proportional to the active-sterile mixing squared, which is tiny,
so we neglect it in this study. Thus the active-light mixing is described by the unitary matrix
UPMNS = U†

`LU2 (usual PMNS matrix). We may choose to set U`L to unit matrix, leading to
UPMNS = U2, which ensures that for the charged leptons the flavour and mass eigenstates coincide.
For the active neutrinos the same choice is not possible. The U2 PMNS matrix may also include
the CP violating and the unknown, complex Majorana phases. We set those to zero, as we do not
expect that such phases will change our conclusions significantly.
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terms mass matrices
MD =

vp
2

Yn , MR =
wp

2
YN (3.1)

where we chose a basis such that the Majorana mass matrix MR is real, positive and diagonal, while
the Dirac mass matrix MD is complex. In flavour basis the full 6⇥6 mass matrix for the neutrinos
can be written as

M0 =

 
03 MT

D
MD MR

!
(3.2)

so the Dirac and Majorana mass terms appear already at tree level by SSB, i.e. not generated
radiatively.

The flavour eigenstates (ne, nµ , nt , nc
R,1, nc

R,2, nc
R,3) can be transformed into the ni (i = 1�6)

mass eigenstates with a 6⇥6 unitary matrix U where the mass matrix is diagonal,

UT M0U = M = diag(m1,m2,m3,m4,m5,m6) . (3.3)

It is helpful to decompose the matrix U into two 3⇥6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (3.4)

so UT = (UT
L ,U

†
R) where both blocks are 6⇥3 matrices. It may be worth emphasizing that in spite

of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary. Useful

relations of these matrices are collected in the Appendix of Ref. [?].
While the full diagonalization in Eq. (3.3) is cumbersome, one can first block-diagonalize the

block mass matrix up to small corrections:
 

Mn 0
0 MN

!
=

 
1 Uas

�U†
as 1

!T  
0 MT

D
MD MR

! 
1 Uas

�U†
as 1

!
⇡
 
�MT

DM�1
R MD 0

0 MR

!
(3.5)

where the matrix Uas = M†
DM�1

R is the active-sterile mixing matrix having elements Uai (a =

e, µ, t , i = 4, 5, 6). In the last step of (3.5) we neglected blocks suppressed in the see-saw limit,
such as the off-diagonal blocks U⇤

asMDUas and its transpose, as well as MDUas and its transpose
as compared to MR. Whether or not such terms are indeed negligible at the physical points can be
justified numerically a-posteriori, once we have numerical estimates for the Yukawa matrices (see
below). For now we assume that �MT

DM�1
R MD and MR are the approximate mass matrices for

active and sterile neutrinos, i.e. the see-saw limit can be applied.
At this point MN is already diagonal, but Mn is not so, so next we diagonalize the light neutrino

mass matrix Mn :
UT

2 MnU2 = Mdiag
n (3.6)

where U2 is a 3⇥3 unitary matrix. Clearly, U2

We have experimental constraints on the upper limits the elements of Mdiag
n [?, ?]. Even if the

tree-level matrix Mdiag
n satisfies those limits, one has to check that the inclusion of loop corrections

to the mass matrix

dM0 =

 
dML dMT

D
dMD dMN

!
= U⇤dMU† (3.7)
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Using that MR is real and diagonal, we can write the active-sterile mixing matrix as

Uas =
vp
2

Y†
nM�1

R . (5.4)

We substitute the matrix Yn as given in Eq. (5.3) to obtain

Uas = UPMNS

q
Mdiag

n (iR†)M�1/2
R . (5.5)

We see that even though the light and heavy neutrino masses and PMNS matrix are independent of
the choice of R matrix, the mixing between active and sterile neutrinos is not so. Hence, knowing
the PMNS matrix experimentally and assuming values for the masses of the neutrinos, we have to
scan over the full parameter space of the R matrix to find the possible Uas matrix elements.

The various accelerator, beam dump and decay search experiments constrain the combinations

U2
e =

6

Â
i=4

|Uei|2 and U2
µ =

6

Â
i=4

|Uµi|2 (5.6)

of the elements of the active-sterile mixing matrix. We can use these sums to investigate the de-
pendence of the neutrino sector of super-weak model on the R matrix, the mass m1 of the lightest
neutrino and the sterile neutrino masses m4, m5 and m6. The sum U2

X in Eq. (5.6) represents the
weight of sterile components in nX (X = e or µ).

We scanned the parameters of the R matrix over the whole parameter space (s12,s13,s23) 2
[0,1]3 to enhance the active-sterile mixings U2

e and U2
µ enough, so that those will be testable at

different upcoming experiments. We performed systematic iterative searches by locating the opti-
mal region in the unit cube, followed by a search again in the optimal sub-volume with a denser
sampling until we reached the desired accuracy of the si j values.

We searched for benchmark points giving valid physics scenarios, and being sensitive to dif-
ferent combinations of the experiments. We chose the benchmark points BP1–BP5 in such a way
that they all evade the present experimental bounds, but can be tested at future experiments. These
points are exhibited in Fig. 4. While at points BP1–BP4 the lightest sterile neutrino has mass in the
keV range, relevant to the freeze-in mechanism of superweak DM production, the at the point BP5
m4 = 25 MeV, showing that the freeze-out mechanism is also possible.

It turns out that the (2,2), (2,3), (3,2) and (3,3) elements dominate Yn , as they correspond to
the heavy right-handed neutrinos n5 and n6. Similarly, the first column in the active-sterile mixing
matrix corresponds to mixing of the active neutrinos to n4. As m4 ⌧ m5 and m6, active-n4 mixing
is stronger than active-n5 and -n6 mixing,

|Ua4|� |Ua5|, |Ua6|, a = e,µ,t . (5.7)

6. Conclusions and outlook
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Figure 4: Constraints in logarithmic (U2
X ,mi) plane i = 5,6 from above are given by several experiments

(shaded area), collected from [?, ?, ?]. Experimental sensitivities of future experiments are given by colored
lines. Left plot: X = e. Right plot: X = µ .
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We substitute the matrix Yn as given in Eq. (5.3) to obtain
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We see that even though the light and heavy neutrino masses and PMNS matrix are independent of
the choice of R matrix, the mixing between active and sterile neutrinos is not so. Hence, knowing
the PMNS matrix experimentally and assuming values for the masses of the neutrinos, we have to
scan over the full parameter space of the R matrix to find the possible Uas matrix elements.
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weight of sterile components in nX (X = e or µ).

We scanned the parameters of the R matrix over the whole parameter space (s12,s13,s23) 2
[0,1]3 to enhance the active-sterile mixings U2

e and U2
µ enough, so that those will be testable at

different upcoming experiments. We performed systematic iterative searches by locating the opti-
mal region in the unit cube, followed by a search again in the optimal sub-volume with a denser
sampling until we reached the desired accuracy of the si j values.

We searched for benchmark points giving valid physics scenarios, and being sensitive to dif-
ferent combinations of the experiments. We chose the benchmark points BP1–BP5 in such a way
that they all evade the present experimental bounds, but can be tested at future experiments. These
points are exhibited in Fig. 4. While at points BP1–BP4 the lightest sterile neutrino has mass in the
keV range, relevant to the freeze-in mechanism of superweak DM production, the at the point BP5
m4 = 25 MeV, showing that the freeze-out mechanism is also possible.

It turns out that the (2,2), (2,3), (3,2) and (3,3) elements dominate Yn , as they correspond to
the heavy right-handed neutrinos n5 and n6. Similarly, the first column in the active-sterile mixing
matrix corresponds to mixing of the active neutrinos to n4. As m4 ⌧ m5 and m6, active-n4 mixing
is stronger than active-n5 and -n6 mixing,

|Ua4|� |Ua5|, |Ua6|, a = e,µ,t . (5.7)

6. Conclusions and outlook
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Neutrino masses are generated by SSB at tree level
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resonant enhancement →predicts mass relation between 
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(in the keV range for freeze-in)

Valid benchmark points are found that will be testable in SHIP 
and MATHUSLA experiments: motivation for systematic 
exploration of the parameter space

Cosmological and particle physics consequences of the scalar 
sector is to be explored                             [Péli et al, arXiv:1911.07082]
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New fields: 3 right-handed neutrinos νR
f, a new scalar χ, and new 

U(1)z gauge boson B’

kinetic mixing:  

covariant derivative:

or equivalently can choose basis s. t.:

     and can parametrize the coupling matrix s.t.:

                                                                                                             with

II. PARTICLE MODEL, MIXINGS AND INTERACTIONS

We consider an extension of the standard model by a U(1)z gauge group with particle content

and charge assignment defined in Ref. [28]. The super-weak model is an economical extension of

the standard model that provides a framework to explain the origin of (i) neutrino masses and

oscillations [29], (ii) dark matter [30], (iii) cosmic inflation and stabilization of the electroweak

vacuum [31], (iv) matter-antimatter asymmetry of the universe. The complete model including

Feynman rules in the unitary gauge was presented fully in Ref. [28]. As we are to compute

one-loop corrections to neutrino masses, we recall the details relevant to such computations,

with Feynman rules in the R⇠ gauge. We generated those Feynman rules with SARAH[32–35]

but here we present simpler forms for the rules needed in our computations to make those more

comprehensive. We also recall some of the conventions that are different in SARAH and the

original definition of the model. We stick to the SARAH conventions throughout this work.[36]

A. Mixing of neutral gauge bosons

The particle content of the standard model is extended by 3 right-handed neutrinos ⌫R, a

new scalar �, and the U(1)z gauge boson B0. As the field strength tensors of the U(1) gauge

groups are gauge invariant, kinetic mixing is allowed between the gauge fields belonging to the

hypercharge U(1)y and the new U(1)z gauge symmetries, whose strength is measured by ✏ in

L � �1

4
F µ⌫Fµ⌫ �

1

4
F 0µ⌫F 0

µ⌫ �
✏

2
F µ⌫F 0

µ⌫ ,

DU(1)
µ = �i(ygyBµ + zgzB

0
µ)

(II.1)

where Bµ is the U(1)y gauge field. However, equivalently, we can choose the basis—the con-

vention in SARAH—in which the gauge-field strengths do not mix, while the couplings are given

by a 2⇥ 2 coupling matrix in the covariant derivative

DU(1)
µ = �i

⇣
y z

⌘
0

@ĝyy ĝyz

ĝzy ĝzz

1

A

0

@B̂µ

B̂0
µ

1

A (II.2)

where y and z are the U(1)y and U(1)z charges. We can parametrize the coupling matrix as

ĝ =

0

@ĝyy ĝyz

ĝzy ĝzz

1

A =

0

@gy �⌘g0z

0 g0z

1

A

0

@ cos ✏0 sin ✏0

� sin ✏0 cos ✏0

1

A . (II.3)
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The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
0

BBB@

B̂µ

W 3µ

B̂0µ

1

CCCA
=

0

BBB@

cos ✓W � cos ✓Z sin ✓W � sin ✓Z sin ✓W

sin ✓W cos ✓Z cos ✓W cos ✓W sin ✓Z

0 � sin ✓Z cos ✓Z

1

CCCA

0

BBB@

Aµ

Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
Z0⌫⌫ =

gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)
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where θW is the Weinberg angle & θZ is the Z—Z’ mixing, 
implicitly:                                        , with

(                                             )
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BBB@

Aµ

Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,

sin ✓Z = sgn ()

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓Z =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
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gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)
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which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos

eCL
Z⌫⌫ =

gL
2 cos ✓W

h
cos ✓Z � (�0

y � �0
z) sin ✓Z cos ✓W

i
, eCR

Z⌫⌫ = �gL
2
�0
z sin ✓Z ,

eCL
Z0⌫⌫ =

gL
2 cos ✓W

h
sin ✓Z + (�0

y � �0
z) cos ✓Z cos ✓W

i
, eCR

Z0⌫⌫ =
gL
2
�0
z cos ✓Z ,

(II.7)

i.e. CL/R
Z0⌫⌫ can be obtained from CL/R

Z⌫⌫ by the replacement

(Z ! Z 0
) ) (cos ✓Z , sin ✓Z) ! (sin ✓Z ,� cos ✓Z) . (II.8)

5

C. Masses of neutral gauge bosons

As expected, the elements of the diagonal matrix m2
diag,A coincide with the squares of the

masses of the neutral gauge bosons [28],

M2
Z =

✓
MW

cos ✓W

◆2 h
(cos ✓Z �  sin ✓Z)

2
+ (⌧ sin ✓Z)

2
i

(II.23)

and

M2
Z0 =

✓
MW

cos ✓W

◆2 h
(sin ✓Z +  cos ✓Z)

2
+ (⌧ cos ✓Z)

2
i
, (II.24)

which can also be expressed conveniently with the chiral couplings and Goldstone mixing angle.

First we note that using Eq. (II.23), we find the simple relation

sin ✓G = ⌧
sin ✓Z
cos ✓W

MW

MZ
(II.25)

between the Goldstone and neutral boson mixing angles, and also

cos ✓G = ⌧
cos ✓Z
cos ✓W

MW

MZ0
. (II.26)

Next, we can substitute the relations found in Eq. (II.20) into Eqs. (II.23) and (II.24) together

with the definition of the right handed couplings defined in Eq. (II.7), resulting in

M2
Z = v2e2

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

+ w2g0 2z sin
2 ✓Z (II.27)

and also using Eq. (II.8),

M2
Z0 = v2e2

⇣
CL

Z0⌫⌫ � CR
Z0⌫⌫

⌘2

+ w2g0 2z cos
2 ✓Z . (II.28)

From Eq. (II.25) and (II.26) we can express

wg0z sin ✓Z = MZ sin ✓G and wg0z cos ✓Z = MZ0 cos ✓G , (II.29)

which after substitution and simple rearrangement leads to

M2
Z =

v2e2

cos2 ✓G

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

, M2
Z0 =

v2e2

sin
2 ✓G

⇣
CL

Z0⌫⌫ � CR
Z0⌫⌫

⌘2

. (II.30)

D. Mass terms and mixing of neutrinos

The masses of the neutrinos are generated by the leptonic Yukawa terms in the Lagrangian

[28],

� L`
Y =

1

2
⌫c
R YN ⌫R�+ LL �c Y⌫ ⌫R + h.c. (II.31)
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where the scalar mixing angle is related to the 
potential parameters:

and for the Goldstone mixing angle is related to the 
neutral gauge boson mixing angle:

B. Mixings of scalar and Goldstone bosons

In addition to the usual SU(2)L-doublet Brout-Englert-Higgs (BEH) field

� =

0

@�+

�0

1

A =
1p
2

0

@�1 + i�2

�3 + i�4

1

A , (II.9)

there is another complex scalar � in the model, with charges specified in [28]. The Lagrangian

of the scalar fields contains the potential energy

V (�,�) = V0 � µ2
�|�|2 � µ2

�|�|2 +
�
|�|2, |�|2

�
0

@��
�
2

�
2 ��

1

A

0

@|�|2

|�|2

1

A ⇢ �L (II.10)

where |�|2 = |�+|2 + |�0|2. In the R⇠ gauge we parametrize the scalar fields after spontaneous

symmetry breaking as

� =
1p
2

✓
�i

p
2�+

v + h0 + i��

◆
, � =

1p
2
(w + s0 + i��) (II.11)

where v and w denotes the vacuum expectation values (VEVs) of the fields, whose values are

v =
p
2

s
2��µ2

� � �µ2
�

4���� � �2
, w =

p
2

s
2��µ2

� � �µ2
�

4���� � �2
. (II.12)

Using the VEVs, we can express the quadratic couplings as

µ2
� = ��v

2
+

�

2
w2 , µ2

� = ��w
2
+

�

2
v2 . (II.13)

The fields h0 and s0 are two real scalars and �� and �� are the corresponding Goldstone

bosons that are weak eigenstates. We shall denote the mass eigenstates with h, s and �Z , �Z0 .

These different eigenstates are related by the rotations

✓
h

s

◆
= ZS

✓
h0

s0

◆
⌘

0

@cos ✓S � sin ✓S

sin ✓S cos ✓S

1

A
✓
h0

s0

◆
(II.14)

and
✓
�Z

�Z0

◆
= ZG

✓
��

��

◆
⌘

0

@cos ✓G � sin ✓G

sin ✓G cos ✓G

1

A
✓
��

��

◆
(II.15)

where ✓S and ✓G are the scalar and Goldstone mixing angles that can be determined by the

diagonalization of the mass matrix of the real scalars and that of the neutral Goldstone bosons.
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The scalar mixing angle ✓S is related to the potential parameters by [28]

tan(2✓S) = � �vw

��v2 � ��w2
. (II.16)

The condition ✓S 2 (�⇡
4 ,

⇡
4 ) implies that the scalar mass eigenstates are not labeled by mass

hierarchy.

The mass matrix of the Goldstone bosons is given in principle by the sum of gauge-

independent and gauge-dependent terms. However, the gauge-independent terms vanish by

Eq. (II.13): 0

@
1
2�w

2
+ ��v2 � µ2

� 0

0
1
2�v

2
+ ��w2 � µ2

�

1

A = 0 , (II.17)

so the mass matrix contains only gauge-dependent terms,

m2
A = ⇠Zm2

AZ
+ ⇠Z0m2

AZ0 (II.18)

where ⇠Z and ⇠Z0 are the gauge parameters. The mass matrix is symmetric, so we can write it

formally as

m2
Ax

=

0

@ m2
Ax,11 m2

Ax,12

m2
Ax,12 m2

Ax,22

1

A , (II.19)

for both x = Z and Z 0. Explicitly,

m2
AZ ,11 = v2e2

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

=

✓
MW

cos ✓W

◆2

(cos ✓Z �  sin ✓Z)
2 ,

m2
AZ ,12 = 2vwe2

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘
CR

Z⌫⌫ =

✓
MW

cos ✓W

◆2

(cos ✓Z �  sin ✓Z)(�⌧ sin ✓Z) ,

m2
AZ ,22 = w2e2

⇣
2CR

Z⌫⌫

⌘2

=

✓
MW

cos ✓W

◆2

(�⌧ sin ✓Z)
2

(II.20)

where MW =
vgL
2 is the mass of the W bosons, and the elements of m2

AZ0 can be obtained by the

replacement Z ! Z 0 in the chiral couplings, which implies the replacement (II.8) in the second

forms of the matrix elements. The latter are the most convenient ones for the diagonalization

of the mass matrix. Using Eq. (II.6), one can check that the matrix

ZGm2
AZT

G = m2
diag,A

is indeed diagonal provided we have for the Goldstone mixing angle

cos ✓G =
cos ✓Z �  sin ✓Zp

(cos ✓Z �  sin ✓Z)2 + (⌧ sin ✓Z)2
(II.21)

and

sin ✓G =
⌧ sin ✓Zp

(cos ✓Z �  sin ✓Z)2 + (⌧ sin ✓Z)2
. (II.22)

7

tan ✓G = tan ✓Z
MZ0
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for neutrinos

obeying 

The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian

(II.1) and the parameters of the two representations are related by g0z = gz/
p
1� ✏2 and ⌘ =

✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
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W 3µ
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1

CCCA
=
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BBB@
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sin ✓W cos ✓Z cos ✓W cos ✓W sin ✓Z
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1
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0
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Zµ

Z 0µ

1

CCCA
. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,
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which also appear in the neutral currents �
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PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
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) are the usual chiral projections. In
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i.e. CL/R
Z0⌫⌫ can be obtained from CL/R
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✏gy/gz. In this paper, it will be convenient to use the kinetic mixing representation defined by

(II.1).

The rotation with angle ✏0 is unphysical as it can be absorbed into the mixing of the neutral

gauge fields Bµ, B0µ and W 3µ to the mass eigenstates Aµ, Zµ and Z 0µ, which then can be

described by a rotation matrix
0
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. (II.4)

This matrix depends on two mixing angles: ✓W is the weak mixing (or Weinberg) angle and ✓Z

is the Z � Z 0 mixing angle [37]. In terms of the coupling parameters

 = cos ✓W(�0
y � 2�0

z) and ⌧ = 2 cos ✓W�0
z tan � , (II.5)

introduced in Ref. [28], this new mixing angle is given implicitly by tan(2✓Z) = 2/(1�2�⌧ 2).

In Eq. (II.5) tan � = w/v is the ratio of the vacuum expectation values (VEVs) of the scalar

fields (see below) and �0
y = (✏/

p
1� ✏2)(gy/gL), �0

z = g0z/gL, i.e. the couplings are normalized

by the SU(2)L coupling.

We can express the elements of the Z � Z 0 mixing matrix explicitly,
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,

(II.6)

which also appear in the neutral currents �
µ
V f̄f

= �ie�µ
(CR

V f̄f
PR + CL

V f̄f
PL) where e is the

electromagnetic coupling and PR/L ⌘ P± =
1
2(1 ± �5

) are the usual chiral projections. In

particular, for neutrinos
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can also be expressed with chiral couplings:

which are crucial for checking gauge independence

C. Masses of neutral gauge bosons

As expected, the elements of the diagonal matrix m2
diag,A coincide with the squares of the

masses of the neutral gauge bosons [28],

M2
Z =

✓
MW

cos ✓W

◆2 h
(cos ✓Z �  sin ✓Z)

2
+ (⌧ sin ✓Z)

2
i

(II.23)

and

M2
Z0 =

✓
MW

cos ✓W

◆2 h
(sin ✓Z +  cos ✓Z)

2
+ (⌧ cos ✓Z)

2
i
, (II.24)

which can also be expressed conveniently with the chiral couplings and Goldstone mixing angle.

First we note that using Eq. (II.23), we find the simple relation

sin ✓G = ⌧
sin ✓Z
cos ✓W

MW

MZ
(II.25)

between the Goldstone and neutral boson mixing angles, and also

cos ✓G = ⌧
cos ✓Z
cos ✓W

MW

MZ0
. (II.26)

Next, we can substitute the relations found in Eq. (II.20) into Eqs. (II.23) and (II.24) together

with the definition of the right handed couplings defined in Eq. (II.7), resulting in

M2
Z = v2e2

⇣
CL

Z⌫⌫ � CR
Z⌫⌫

⌘2

+ w2g0 2z sin
2 ✓Z (II.27)

and also using Eq. (II.8),

M2
Z0 = v2e2
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Z0⌫⌫ � CR
Z0⌫⌫

⌘2

+ w2g0 2z cos
2 ✓Z . (II.28)

From Eq. (II.25) and (II.26) we can express

wg0z sin ✓Z = MZ sin ✓G and wg0z cos ✓Z = MZ0 cos ✓G , (II.29)

which after substitution and simple rearrangement leads to

M2
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Z⌫⌫

⌘2

, M2
Z0 =

v2e2

sin
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⇣
CL

Z0⌫⌫ � CR
Z0⌫⌫

⌘2

. (II.30)

D. Mass terms and mixing of neutrinos

The masses of the neutrinos are generated by the leptonic Yukawa terms in the Lagrangian

[28],

� L`
Y =

1

2
⌫c
R YN ⌫R�+ LL �c Y⌫ ⌫R + h.c. (II.31)
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The coupling mixing matrix containing ⌘ is equivalent to the kinetic mixing in the Lagrangian
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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E. Gauge boson – neutrino interactions
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the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:
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= �ie�µ
⇣
�L
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ij
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where
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V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
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RU⇤
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9

and

�R
V ⌫⌫ = �CL

V ⌫⌫U
T
LU⇤

L + CR
V ⌫⌫U

†
RUR = �

⇣
�L

V ⌫⌫

⌘⇤
(II.39)

for both V = Z and V = Z 0.

F. Scalar boson – neutrino and Goldstone boson – neutrino interactions

The terms containing the scalar and Goldstone bosons in Eq. (II.32) provide interactions

between those and the neutrinos. These interactions have the same structure with small dif-

ferences. For the propagating scalar states Sk or �k (k = 1 denoting h or the Goldstone

boson belonging to Z and k = 2 referring to s or the Goldstone boson belonging to Z 0) such

interactions can be decomposed into left and right chiral terms

�Sk/�k ⌫i⌫j =

⇣
�L

Sk/�k ⌫⌫PL + �R
Sk/�k ⌫⌫PR

⌘

ij
(II.40)

where the matrices �L/R contain both the mixing matrix of the neutrinos and the mixing matrix

of the scalar or Goldstone bosons. The left chiral coefficients are

�L
Sk⌫⌫

= �i

⇣
MU†

LUL + UT
LU⇤

LM
⌘
(ZS)k1

v
+ U†

RMNU⇤
R

(ZS)k2

w

�
, (II.41)

and

�L
�k⌫⌫

= �
⇣

MU†
LUL + UT

LU⇤
LM

⌘
(ZG)k1

v
+ U†

RMNU⇤
R

(ZG)k2

w

�
(II.42)

and the right chiral ones are related by complex conjugation, �R
Sk/�k ⌫⌫ = �

⇣
�L

Sk/�k ⌫⌫

⌘⇤
.

III. NEUTRINO MASS MATRIX AT ONE-LOOP ORDER

We are interested in the one-loop correction �ML to the tree-level mass matrix of the light

neutrinos. In perturbation theory we deal with propagating states which are mass eigenstates.

Hence, we can compute loop corrections to self energies of mass eigenstates of neutrinos. The

neutrino mass matrix at one-loop order is then obtained from Eq. (II.35), with diagonal mass

matrix substituted at one loop, M + �M where

�M = diag(�m1, �m2, �m3, �m4, �m5, �m6) . (III.1)
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RMNU⇤
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calculation is simple conceptually
self energy can be decomposed as

and
takes contributions from

with Feynman rules given in the Appendix

Hence, the correction is obtained by

�M0
=

0

@�ML �MT
D

�MD �MN

1

A = U⇤�MU† . (III.2)

Using Eq. (II.36), we can compute the 3⇥ 3 blocks as

�ML = U⇤
L�MU†

L, �MD = UR�MU†
L, �MN = UR�MUT

R . (III.3)

In the following subsections we prove that the one-loop correction to the mass matrix of the

active neutrinos have the form

�ML =
1

16⇡2

X

k=1,2


3(ZG)

2
k1

M2
Vk

v2
F(M2

Vk
) + (ZS)

2
k1

M2
Sk

v2
F(M2

Sk
)

�
(III.4)

where we introduced the finite matrix valued function

Fij(M
2
) =

6X

a=1

(U⇤
L)ia(U

†
L)aj

m3
a

M2

ln
m2

a
M2

m2
a

M2 � 1
(III.5)

of dimension mass and with summation running over all neutrinos.

A. Self-energy decomposition

The neutrino self energy is a 6⇥ 6 matrix that can be decomposed as

i⌃(p) = AL(p
2
)/pPL + AR(p

2
)/pPR + BL(p

2
)PL + BR(p

2
)PR . (III.6)

Using this decomposition, �ML is given by [24]

�ML = U⇤
LBL(0)U†

L . (III.7)

The matrix BL(0) receives contributions involving a neutrino and either a neutral vector

boson Z, Z’, or a scalar boson �Z , �Z0 (Goldstone boson), h, s (Higgs-like scalar) in the loop.

The relevant Feynman graphs that give contributions to the neutrino self energies at one-loop

order are shown in Fig. 1. There are also tadpole contributions to BL(0). Those are proportional

to the scalar-neutrino coupling �L
Sk⌫i⌫j

given in Eq. (II.40), which vanishes when sandwiched

between U⇤
L and U†

L, see Eq. (A.5). The charged vector boson together with a charged lepton

in the loop (bottom right diagram in Fig. 1) contributes only to AL/R. Thus we compute the

first three graphs explicitly. For a given boson x in the loop, the matrix BL(0) depends on the

mass Mx and also the tree-level masses of the neutrinos {ma}, BL(0) = Bx
L(Mx, {ma}).
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FIG. 1. One-loop graphs contributing to the neutrino self energy. Top left: Goldstone boson contri-

bution. Top right: scalar contribution. Bottom left: neutral gauge boson contribution. Bottom right:

charged gauge boson contribution. Note that W boson loop does not contribute to the matrix BL.

B. Contributions with neutral gauge bosons in the loop

The contribution of the neutral gauge boson V is

⇣
BV

L (MV , {ma}; ⇠V )
⌘

ij
PL = i

Z
d
d`

(2⇡)d

6X

a=1

�
µ
V ⌫i⌫a

/p� /̀+ma

(p� `)2 �m2
a

�
⌫
V ⌫a⌫jPµ⌫(`,M

2
V ; ⇠V ) (III.8)

where ⇠V is the gauge parameter and

Pµ⌫(`,M
2
V ; ⇠V ) =

gµ⌫
`2 �M2

V

� (1� ⇠V )
`µ`⌫

(`2 �M2
V )(`

2 � ⇠VM2
V )

. (III.9)

Introducing the 6⇥ 6 matrix

m(n)
` = diag

✓
mn

1

`2 �m2
1

, . . . ,
mn

6

`2 �m2
6

◆
, (III.10)

and using the result of Appendix B, we obtain the following expression for a neutral vector

boson in the loop:

�MV
L = ie2

⇣
CL

V ⌫⌫ � CR
V ⌫⌫

⌘2
Z

d
d`

(2⇡)d
U⇤

L


d m(1)

`

`2 �M2
V

+
m(3)

`

M2
V

✓
1

`2 � ⇠VM2
V

� 1

`2 �M2
V

◆�
U†

L.

(III.11)
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C. Contributions with neutral Goldstone bosons in the loop

The contribution of the neutral Goldstone boson �V (V = 1 means the Goldstone boson

belonging to the Z field and V = 2 refers to the Z 0 field) is

⇣
B�V

L (m�V , {ma}; ⇠V )
⌘

ij
PL = �i

Z
d
d`

(2⇡)d

6X

a=1

��V ⌫i⌫a

ma

`2 �m2
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��V ⌫a⌫j

1

`2 � ⇠VM2
V

. (III.12)

Using the matrix notation, we can write

U⇤
LB

�V
L (0)U†

LPL = �i

Z
d
d`

(2⇡)d
U⇤

L��V ⌫⌫m
(1)
` ��V ⌫⌫U†

L

1

`2 � ⇠VM2
V

. (III.13)

Substituting the vertex functions of Eq. (II.40) and employing the matrix relations in Eqs. (A.2)

and (A.5), we obtain the correction to the mass matrix as

�M�V
L = �i

Z
d
d`

(2⇡)d
U⇤

LMm(1)
` MU†

L

✓
(ZG)V 1

v

◆2
1
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V

. (III.14)

We now substitute Mm(1)
` M = m(3)

` and using Eq. (II.30), we obtain

�M�V
L = �ie2

⇣
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. (III.15)

D. Contributions with scalar bosons in the loop

The scalar – neutrino vertex is very similar to the Goldstone boson neutrino vertex, so the

contribution with a scalar boson Sk in the loop can be written immediately in analogy with

Eq. (III.14):

�MSk
L = i

Z
d
d`

(2⇡)d
U⇤

LMm(1)
` MU†

L

✓
(ZS)k1

v

◆2
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Sk

= i

✓
(ZS)k1

v

◆2 Z
d
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(2⇡)d
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Lm
(3)
` U†

L

1

`2 �M2
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.

(III.16)

E. The complete one-loop mass correction

Combining Eqs. (III.11), (III.15) and (III.16), we find that that the gauge-dependent pieces

of the vector boson contribution cancel exactly with the Goldstone boson contribution, and
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E. The complete one-loop mass correction
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of the vector boson contribution cancel exactly with the Goldstone boson contribution, and
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FIG. 4. Eigenvalues of the matrix F as a function of the mass of the boson in the loop mloop, assuming

mtree
1 = 0.01 eV, mtree

4 = 30 keV, mtree
5 ⇡ mtree

6 = 2.5 GeV, and normal neutrino mass hierarchy.

V. CONCLUSIONS

In this paper, we have computed the one-loop corrections to the mass matrix of the active

neutrinos in a gauged U(1) extension of the standard model of particle interactions. The field

content of the model consists of a new complex scalar field and three right-handed neutrinos—

sterile under the standard model interactions—in addition to the fields in the standard model.

The neutrino masses are generated by Dirac and Majorana type Yukawa terms, which after

spontaneous symmetry breaking of both scalar fields give rise to neutrino masses in the way

of the type I see-saw mass generation. We used R⇠ gauge and have shown that the one-loop

corrections are (i) independent of the gauge fixing parameters, (ii) finite and (iii) independent

of the regularization scale. We also demonstrated how the formula for the one-loop mass

corrections can be generalized to the case of arbitrary number of new U(1) groups, complex

scalars and right-handed neutrinos.

We have provided a numerical estimate of the size of the mass corrections in the context of the

19

Eigenvalues of the matrix F as a function of the mass 
of the boson in the loop mloop, assuming m1tree = 
0.01 eV, m4tree = 30 keV, m5tree ≈ m6tree = 2.5 GeV, 
and normal neutrino mass hierarchy 

eigenvalues can be large, but coupling suppression tames the relative 
correction to the tree-level mass below percent level
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mass of Z′ boson in logarithmic (gy′, gz′) plane 

50

assume large mixing in the scalar sector  sin θS = O(0.1) 
Z′ mass and Goldstone mixing are fixed by the gauge couplings gy′ = γy′ gL and gz′ and ratio of 
VEVs, tan β ≡ w/v 
MZ′ ∈ [20, 200] MeV, relevant mass region for the super-weak model to reproduce the dark matter 
relic density     [Seller et al: arXiv:2104.11248]

FIG. 2. Absolute values of sin ✓G (top) and mass of Z 0 boson (bottom) in logarithmic (g0y, g
0
z)

plane. For ✓G the contour labels n correspond to value 10n. Left plots: w = 100GeV; right plots:

w = 750GeV.

Then we identify the order-of-magnitude estimate for | sin ✓G| by comparing the regions rel-

evant to the mass range of MZ0 . For w = 100 GeV, we have | sin ✓G| < 10
�6, which we take as

a conservative upper limit. Then the prefactors in gauge boson contributions to �ML are

e2(CL
Z⌫⌫ � CR

Z⌫⌫)
2
= cos

2 ✓G
M2

Z

v2
⇠ O(10

�1
) (IV.1)

and

e2(CL
Z0⌫⌫ � CR
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2
= sin

2 ✓G
M2

Z0

v2
⇠ O(10

�19
)⇥

✓
MZ0

100MeV

◆2

. (IV.2)

Then the numerical estimate for the total correction in Eq. (III.4) can be written as

(�ML)ij < O(10
�7
) eV +O(10

�21
)⇥

✓
MZ0

100 MeV

◆2

Fij(M
2
Z0) . (IV.3)
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Matrix elements Fij as a function of the mass mloop of the boson in the loop are confined to the blue band, 
assuming normal neutrino mass hierarchy, with vertical bands showing the relevant mass regions where the 
masses of the bosons in the loop lie. 144 < ms/GeV < 558, requiring stability of the vacuum. m1tree = 0.01 eV,  
m4tree = 30 keV, m5tree ≈ m6tree = 2.5 GeV

FIG. 3. Matrix elements Fij as a function of the mass mloop of the boson in the loop are confined

to the blue band, assuming normal neutrino mass hierarchy. We have highlighted with vertical bands

the relevant mass regions where the masses of the bosons in the loop lie. The scalar s is required to

have mass between 144 and 558 GeV requiring stability of the vacuum [39]. Left plot: mtree
1 = 0.01 eV,

mtree
4 = 30 keV, mtree

5 ⇡ mtree
6 = 2.5GeV; right plot: mtree

1 = 0.001 eV, mtree
4 = 7.1 keV, mtree

5 ⇡ mtree
6 =

3.0GeV.

The elements of the matrix F are plotted as a function of the mass of the boson of the loop

mloop in Fig. 3 and the eigenvalues of the matrix corresponding to corrections to active neutrino

species in Fig. 4. The eigenvalues of F themselves exceed the active neutrino tree-level masses,

as the latter are at most about 10 eV for the MeV scale Z 0 boson. However, the coupling

suppressions in Eq. (IV.3) are sufficient to tame the relative correction to the tree level mass

below the per cent level. Assuming the active neutrino masses to be O(10
�3
) eV, a rough

estimate for the relative correction to active neutrino masses is of O(10
�4
).

We may maximize the effect of Z 0 loop by allowing Z 0 mass to be free and setting large

| sin ✓G| = O(10
�1
), which is obtained when g0y and g0z are O(10�1). This corresponds to MZ0 =

O(MZ), which is of course, excluded. Yet, even in this case, the correction from Z and Z 0 loops

are small, have the same order of magnitude, O(10
�7
) eV. Thus, the individual contributions

from BSM loops cannot be significantly larger than the SM contributions.
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