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Motivation

Unified description of Nature

e Extra Gauge Symmetry (i.e. GUTs)
o Supersymmetry

e Extra Dimensions
— Unify gauge and Higgs sectors
— Also unify fermion interactions with the above sectors
— SUSY can unify all the above in one vector supermultiplet
— Less free parameters
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Coset Space Dimensional Reduction

1. Compactification o af
B - compact space M — X B
dmB=D—4=d | [
D dims — 4 dims Mooxt Yo
2. Dimensional Reduction L independent of the exira coordinates y°:

@ "Naive" way: Discard the field dependence on y° coordinates

e Elegant way: Allow field dependence on y“
— compensated by a symmetry of the Lagrangian — Gauge Symmetry

3. Coset Space Dimensional Reduction

— B=S/R
— Allow a non-tfrivial dependence on y°

— impose the condition that a symmetry transformation by an element of
the isometry group S of B is compensated by a gauge transformation

— Gauge invariant £ — L independent of y |
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Reduction of a D-dimensional Yang-Mills Lagrangian

Consider a Yang-Mills-Dirac theory in D dims based on group G
defined on MP — M* x S/R,D =4+ d

1 i—
S = /d“xddy\/g [ — ZTr(FMNFK/\)QMKgNA + ET/JFMDM¢

Demand: any transformation by an element of S acting on S/R
is compensated by gauge transformations.

— Constraints on the fields of the theory Ajand 1)

Solution of constraints:

e The 4D gauge group: Ce(Rs) (e GDRsxH)

e 4D (surviving) fields D = 4n + 2 Weyl + Mdjorana fermions
in vector-like rep — 4D chiral theory.

e Scalar Potential
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The 4D Theory
Integrate out the extra coordinates ( + take into account constraints):

s=c [ dxw HFWF " (0u6)(0")
+V(9) + E&F“Dw - E&F"Daw

where

V(9) = 50701 { (G6c — 19l 06]) (G0 — flbe, )}

V/(¢) still only formal since ¢o must satisfy one more constraint,
elf G D S = Hbreaksto K = Cg(S):

G D S X K <+ gauge group after SSB
u n
G D R X H < gauge group in 4 dims
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Reduction of 10D, N = 1 Eg over S/R = SU(3)/U(1) x U(1)

The non-symmetric (nearly-Kahler) coset space SU(3)/U(1) x U(1):
@ admits torsion and may have different radii
e naturally produces soft supersymmetry breaking terms
@ preserves the supersymmetric multiplets

We use the decomposition
Es D Ey X SU(S) D Ey X U(])A X U(])B
and choose R = U(1)a x U(1)s
— H = CEg(U(])A X U(])B) = E, X U(])A X U(])B
Since S C G, H breaks to
K = Ce(S) = Es x [U(1) x U(1)]goba
N =1, Es x U(1)a x U(1)s gauge group
Three chiral supermultiplets A" : 27(3 1 /2y, B': 27(_31/2), C': 27(0, 1)

Three chiral supermultiplets A @ T3 1/2), B T(_3,1/2), C: 1(0,—1)
RIHR+RS

8/ RERERE

Gaugino mass M = (1 + 37)
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The Wilson Flux Breaking

M*x By — M*xB,  B=B/FIF
— FS/R is a freely acting discrete symmetry of By.

B becomes multiply connected — breaking of H to K = Cy(T")
TH is the image of the homomorphism of F¥/R into H

In our case
o FS/R =75 — B=5U(3)/U(1) x U(1) x Zs
o H=Es x U(1)a x U(1)p
o K'=35U(3). x SU(3), x SU(3)p x U(1)a x U(1)s . still N =1

Matter fields invariant under FS/R @ TH survive

— 3 = diag(L,wl,w?1), w=e?"/%¢c Z,
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The surviving matter fields are given by:
C' = w3y, C

o Al = wyAl, B = w?y:B,

e A=wA, B=w’B, C=uwC

Es O SU(3)e x SU(3), x SU(3)r

27 =(1,3,3)®(3,3,1) @ (3,1,3)

Surviving matter content of the projected theory:

As = q° ~ (3, ],3)(3’%),
CG=L~ (]73a3)(0,71)7

Non-trivial monopole charges in R — three generations: g°1), @), @), g1

cl cl el 1
S B Sy A o
q = z:!,?3 u,?3 D,;,3 , = uL]

[ C C

& Uz Dp D[

=Q~(33
c= 9~(1

3,1)(-s
)071

3,3)

-2 —df HS Hf w
u? up , L= Hy H e
D? D} vg e S
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V—Q2 LRI DR VANTVANTRY:
- 5 R14 Rg R;f F D soft

For one generation: §VD = %Daoa + %D] Dy + %DzDz
Z5Uerletla®) + (@le*a@) + (L))

by = 3/ O(erla) ~ (el@))

o = /Bl + (10) — 2(t) — 1)

2
Ve = 360tr(A° §°
g

DA =

ata+1') F = %/SV W = /400y A'B C* 4+ V/40ABC

J’_
2 8 4R?
g = (W &) (1) + (g - R2)<Q‘Q>
8
+ (g~ ) () + o)

R Rs ca b, c
80 Qabe g Q°LS + .
+ f(lwa R]R3+R1R2)( e s +hc)

= mi{(e1a°) + m(QIQ) + i ((LIL) + 101) + (0uea™ QL + hic)
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Further Gauge Breaking of SU(3)?

Two generations of L acquire vevs that break the GUT:

000 0 00
=100 o0 |, (D=0 o0 o
00 V V. oo

each one alone is not enough to produce the (MS)SM gauge group:
SU(3)e x SU(3). x SU(3)r — SU(3). x SU(2), x SU(2)r x U(1)
SU(3). x SU(3), x SU(3)r — SU(3)c x SU(2), x SU(2); x U(T)
Their combination gives the desired breaking:
SU(3)c x SU(3), x SU(3)r — SU(3)e x SU(2), x U(1)y
electroweak breaking then proceeds by:

Vg 0 0
Bh=1 0 v, 0
0 0 0



wsional Reduction Phenomenological Analysis
©000000

Choice of Radii

- 1
— Soft trilinear terms ~~ R
1l
1
— Soft scalar masses ~ 2
i
Two main possible directions:

e Large R; — calculation of the Kaluza-Klein contributions of the 4D theory
x Eigenvalues of the Dirac and Laplace operators unknown.

@ Small Ry — high scale SUSY breaking

e Small R ~ @ with R slightly different in a specific configuration

- m~—=0(TeV?), m,~—-0(My), aae 2 Meur

— supermassive squarks
— TeV-scale sleptons
— TeV-scale soft Higgs squared masses

Reminder: in this scenario Mc = Mgyr
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Lepton Yukawas and ji terms
After the GUT breaking, the potential at the minimum becomes
2 our 6 (1 1 1 %
Zyeur — IERTINL NNV I
92 scalar 5(R$+R§+R§)+9
20
+ 5[+ 607 + (v + 7)) + (6]
AR5 8 24 1902 1 9@ 4 g2
+ (R]zRg 7@3) (2v2 + 1687 + 1612 + 16§1?)
= (09) ~ O(Tev), (80)) ~ O(Meur)
e The two global U(1)s forbid Yukawa terms for leptons
N3
— intfroduce higher-dimensional operators: LeHy (ﬁ)

e (1, terms for each generation of Higgs doublets are absent

— solution through higher-dimensional operators:

POy
— K is the vev of the conjugate scalar component of either S("), l/(i) or ()

or any combination of them

nclusions
000
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Approximate Scale of Parameters

Parameter Scale
soft trilinear couplings O(GuUr)
squark masses O(Gur)
slepton masses O(TeV)
soft Higgs masses O(TeV)
e O(TeV)
((12) o(eur)
unified gaugino mass My | O(TeV)
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Gauge Unification

Since many SUSY parameters are comparable to Mgyr, we consider them to
decouple at an infermediate scale M.

The 1-loop gauge B-functions are: Scale b b bs
) Mew-Mrev % -3 | =7
27Tﬁf = bjq Mrev-Mint % —% -5
Mint-Mour | 2 3] -3
— b; depends on the particle content
@ «; o are used as input to determine Mgyr
e 0.3% uncertainty at the unification boundary
— g is predicted within 20 of the experimental value
Scale GeV
as(Mz) =0.1218 Mgur | ~ 1.7 x 107
Mint ~9x 10"
af®(Mz) = 0.1187 4+ 0.0016 Mrey ~ 1500

No proton decay problem: U( 1 )A = — %B
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Higgs Potential

The analysis is restricted to the third generation
Viigos = (31D + m8 ) (IHGJ2 + I 12) + (3l +m? ) (1KEI + H{2)
+ 6 [(HF Hy — HoHB) + c.c.]
10 _
5 0 [IHBI° + g 14+ I+ T
20 PIHg 12 + 2lHg P12 + 2AHEI2IHS I + 2IHE RIS ]
+ §g2 [|H0|2|H0|2 + \H‘|2|H+|2] — 20g° [WH_EH'*' +e c]
3 al 1Py d u g | Falg Hufy -C
— Comparison with standard 2 Higgs doublet potential gives:
) )\]:)\2:)\3:%}92
° N\ = 2057
(] )\5 - )\() - )\7 =0

— Xs6,7 = 01in a (even broken) SUSY theory
— These relations are boundary conditions at Mgyr
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Boundary Conditions and Uncertainties

At the unification scale we have the following boundary conditions and their
respective uncertainties due fo threshold corrections (such uncertainties also
appear at the TeV boundary):

GUT BC GUT Unc. | TeV Unc.
g=9g 0.3%

Yio = 9 6% 2%
)\]72 - %92 8% 8%
As = 2d° 7% 5%
A\ = 2097 7% 5%

The T lepton Yukawa emerges from a higher-dimensional operator and has significantly
wider freedom. The standard 7 lepton mass is used as input.
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1-loop Results

1-loop [-functions used throughout the analysis that change between the
three landmark scales Mgyr, Mjnt and Mgy, .

— mp(M;) and Ay are predicted within 20 of the experimental values

o my(M;) = 3.00 GeV mEP(M;z) =2.83 +£0.10 GeV
o iy =171.6 GeV P =172.44+0.7 GeV

— my, is predicted within 10 of the experimental value

o mp=125.18 GeV mE® = 125,10+ 0.14 GeV

— Large tan 5 ~ 48
— Mp ~ 2000 — 3000 GeV
— LSP ~ 1800 GeV

Phenomenological Analysis Conclusions



Conclusions

Special choice of coset radii for split-like SUSY 2HDM
Mgyr ~ 10" GeV — no proton decay

1-loop predictions agree with LHC measurements
LSP 2> 1500 GeV

M, ~ 2000 — 3000 GeV

Conclusions
@00
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Worle in preparation/planned

e Full (light) SUSY spectrum

e 2-loop analysis

e Application of B-physics constraints
o Calculation of CDM relic density

o Investigation of discovery potential at existing and future
colliders

— Examination of high energy potential — test agreement with
observed value of cosmological constant
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Thank you for your attention!
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