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Introduction I

• Usually in case of mixing fermion masses and fields are renormalized as

m0
i → mi + δmi︸︷︷︸

diagonal ct

ψ0
j →

(
1 + δZ̃ji

)
︸ ︷︷ ︸
non-diagonal ct

ψi

• On shell no-mixing conditions [1]

1

�p−mj
Σji(p

2)ui = 0, ūjΣji(p
2) 1

�p−mi
= 0, i ̸= j

=⇒ δZ̃L,R and δZ̃†
L,R in terms of self-energies — no Σ†!
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Introduction II

• Overspecification of field renormalization constants [2]

Σ ̸= γ0Σ†γ0 =⇒
(
Z̃L,R

)†
̸= Z̃†

L,R

• (pseudo-)Hermiticity violated by absorptive parts
• Different in/out LSZ factors

• additional set of constants Z̄=⇒L ≠ L†, but OK for external legs
• relax the no-mixing conditions (e.g. R̃e) =⇒ non-diagonal OS propagator
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Introduction III

• CKM counterterm by Denner and Sack [3] proposed already 30 years ago

δV ∼ −δZ̃A,uL V + V δZ̃A,dL

• Correctly cancels UV in the Wud vertex ✓
• Depends on field reno and ∂ξδV ̸= 0 [4]

• Various other approaches that deal with ξ...[2, 4, 5, 6, 7, 8, 9]
• Many renormalization conditions, some complicated and process

dependent

• In Kniehl and Sirlin [10, 11, 12], half the no-mixing condition and ∂ξδV = 0, but
• Self-energies only for the SM
• No explicit field renormalization
• External leg “formalism”; discussion rather removed from the Lagrangian
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Introduction IV

Additional problems...

• Usual field renormalizations constants carry factors of 1
m2

i−m2
j

• No massless limit
• No degenerate mass limit
• Numerical enchancement of certain parameter regions

• 1
m2

i−m2
j

carried over to mixing matrix renormalization

• Mixing matrix and self-energy renormalization are closely related

Need consistent self-energy renormalization!
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Setup I

• Only interested in off-diagonal counterterms!

• Want a hermitian Lagrangian =⇒ no-mixing condition only for incoming particles

1

�p−mj
Σji(p

2)ui = 0 , i ̸= j

• Outgoing particles still mix, but only due to absorptive parts!

• Want to separate ξ =⇒ off-diagonal mass counterterms

δmi → δmji

• Want universal mass, field, and mixing matrix ct’s in terms of self-energies =⇒ ...?
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Setup II

• Field is renormalized in a standard way

ψ0
L,R → Z

1/2
L,RψL,R, ψ̄0

L,R → ψ̄L,RZ
1/2†
R,L

• Mass now has left and right counterterms

ψ̄
(
m+ δmLPL + δmRPR

)
ψ

Hermiticity−−−−−−−→
(
δmL

)†
= δmR
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Setup III

• Self-energy decomposition

Σji(p
2)= ΣLji(p

2)�pPL +ΣRji(p
2)�pPR +ΣsLji (p

2)PL +ΣsRji (p
2)PR

+
1

2

(
δZ†

Lji + δZLji

)
�pPL +

1

2

(
δZ†

Rji + δZRji

)
�pPR︸ ︷︷ ︸

standard piece

−
(
δmL

ji +
1

2
δZ†

Rjimi +
1

2
mjδZLji

)
PL

−
(
δmR

ji +
1

2
δZ†

Ljimi +
1

2
mjδZRji

)
PR
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Setup IV

(Hereinafter i ̸= j !)
No-mixing =⇒ relation between field and mass renormalization(

m2
i −m2

j

)
δZLji−2mjδm

L
ji − 2miδm

R
ji︸ ︷︷ ︸

new contributions

= −2
(
m2
iΣ

L
ji(m

2
i ) +mimjΣ

R
ji(m

2
i )

+mjΣ
sL
ji (m

2
i ) +miΣ

sR
ji (m

2
i )
)︸ ︷︷ ︸

standard piece

(
m2
i −m2

j

)
δZRji−2mjδm

R
ji − 2miδm

L
ji︸ ︷︷ ︸

new contributions

= −2
(
m2
iΣ

R
ji(m

2
i ) +mimjΣ

L
ji(m

2
i )

+mjΣ
sR
ji (m

2
i ) +miΣ

sL
ji (m

2
i )
)︸ ︷︷ ︸

standard piece
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Setup V

•
(
δmL

)†
= δmR =⇒ relation to the anti-hermitian part of field renormalization

(
m2
i −m2

j

)
δZA

Lji − 2mjδm
L
ji − 2miδm

R
ji = −

(
m2
iΣ

L
ji(m

2
i ) +mimjΣ

R
ji(m

2
i )

+mjΣ
sL
ji (m

2
i ) +miΣ

sR
ji (m

2
i )
)
+ H.C.

• Analogous equation for δZARji
• 2 equations and 3 unknowns =⇒ 3 > 2!

• Very distinct mass structure in front of field renormalization

Let us explore the properties of m2
i −m2

j
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Exploration: Gauge-dependence

From Nielsen Identities [13, 14, 15]

∂ξΣji(p
2) = Λjj′Σj′i(p

2) + Σji′(p
2)Λ̄i′i

1−loop−−−−→ ∂ξΣji(p
2) = Λji (�p−mi) + (�p−mj) Λ̄ji

• Λ′s have Dirac structure and describe ξ-dependence

(
m2
i −m2

j

)
∂ξδZ

A
Lji − 2mj∂ξδm

L
ji − 2mi∂ξδm

R
ji =

−
(
m2
i −m2

j

) (
miΛ̄

R
ji(m

2
i ) + Λ̄sLji (m

2
i )
)︸ ︷︷ ︸

ξ

+H.C.

=⇒ m2
i −m2

j mass structure carried by ξ-dependent terms!
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Exploration: UV divergences I

• 1-loop contributions to self-energies in terms of PV functions [16]

• For boson contributions we have

ΣL,R(p2) = fL,RB1(p
2,m2

ψloop,m
2
bos.)

UV
=⇒ fL,R · − 1

ϵUV

ΣsL,(sR)(p2) = mψloopf
(†)
s B0(p

2,m2
ψloop,m

2
bos.)

UV
=⇒ mψloopf

(†)
s · 2

ϵUV

• For fermion tadpoles we have

ΣsL,(sR)(p2) = f
(†)
T mψloopA0(m

2
ψloop)

UV
=⇒ f

(†)
T mψloop ·

2m2
ψloop

ϵUV

• f ’s are appropriate couplings and f †L,R = fL,R
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Exploration: UV divergences II

• We have

[(
m2
i −m2

j

)
δZALji − 2mjδm

L
ji − 2miδm

R
ji

]
div.

= − 1

ϵUV

(
−fL (m2

i +m2
j ) − fR 2mimj

+ 4mψloopfs mj + 4mψloopf
†
s mi

+ 4m3
ψloopfT mj + 4m3

ψloopf
†
T mi

)
• No UV divergences with m2

i −m2
j !

• Only (m2
i +m2

j ), 2mimj , mi and mj on the r.h.s
• Rewriting mass ct’s on l.h.s.:
=⇒ −2 mj δm

L
ji − 2 mi δm

R
ji − 2

(
m2
i +m2

j

)
δm−

ji − 2 · 2mimj δm
+
ji

• δmL,R
ji are dimensionful, δm+,−

ji are dimensionless

=⇒ UV structure mimics mass counterterms!
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Exploration: Summary

• Gauge dependence always comes with m2
i −m2

j factors

• ξ-independent terms may also have this structure
• All the other mass structures are ξ-independent
• Applies to finite and UV divergent terms

• No UV divergences with m2
i −m2

j factors

• UV divergences come with m2
i +m2

j , 2mimj , mj , and mi mass structures

• m2
i −m2

j accompanies field ct’s

• m2
i +m2

j , 2mimj , mj , and mi accompanies mass ct’s
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Definitions: Field renormalization

Define the anti-hermitian part of field renormalization as the coefficient of
m2
i −m2

j (i ̸= j)

δZALji ≡ −
[
m2
iΣ

L
ji(m

2
i ) +mimjΣ

R
ji(m

2
i )

+mjΣ
sL
ji (m

2
i ) +miΣ

sR
ji (m

2
i ) +H.C.

]
(m2

i−m2
j )

δZARji ≡ −
[
m2
iΣ

R
ji(m

2
i ) +mimjΣ

L
ji(m

2
i )

+mjΣ
sR
ji (m

2
i ) +miΣ

sL
ji (m

2
i ) +H.C.

]
(m2

i−m2
j )

• Only finite logarithmic terms
• Contains all possible gauge dependence
• Universal definition in terms of self-energies and restrictions
• No 1

m2
i−m2

j
factors by definition!

• The hermitian part is unchanged w.r.t. the usual approach
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Definitions: Mass renormalization

Now SOLVE for δmL,R!

δmL
ji =

1

2

(
miΣ

R
ji(m

2
i ) + ΣsLji (m

2
i ) +mjΣ

L†
ji (m

2
j ) + ΣsR†

ji (m2
j )
)
+

1

2

(
miδZ

A
Rji −mjδZ

A
Lji

)
δmR

ji =
1

2

(
miΣ

L
ji(m

2
i ) + ΣsRji (m

2
i ) +mjΣ

R†
ji (m

2
j ) + ΣsL†ji (m2

j )
)
+

1

2

(
miδZ

A
Lji −mjδZ

A
Rji

)
︸ ︷︷ ︸

cancels gauge-dependence

• Gauge dependence canceled by field renormalization
• Universal expression in terms of self-energies
• For δZA = 0 can extend the real part to the diagonal, then

Re
(
δmL

ii

)
= Re

(
δmR

ii

)
and also matches the results in [2]

• Also no 1
m2

i−m2
j

factors!

• No R̃e or Re for Dirac particles
• Exceptions for Majorana particles
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Majorana Particles

• The bare Majorana condition ν0 = ν0c at 1-loop additionally implies

ν0 = ν0L + ν0cL =⇒ ZLνL + ZRν
c
L =⇒ δZL = δZ⋆R

• But this does not hold due to absorptive parts even when one no-mixing
condition is dropped

δZL ̸= δZ⋆R

• The Majorana condition is not compatible with in/out no-mixing already at 1-loop

• Must drop absorptive parts — R̃e
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Massless Particles and Radiative Masses I

How to use the mass structures if particles are massless?

• Say we have 4 particles, two of which are massless at tree level, i.e.
m = diag (0, 0,m3,m4)

• Then at 1-loop

mji + δmji ∼


Fully massless, i, j < 3 Partially massive, j < 3, i > 2

mj,i = 0 mi ̸= 0

Partially massive, i < 3, j > 2 Fully massive, i, j > 2
mj ̸= 0 mj,i ̸= 0


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Massless Particles and Radiative Masses II

How to use the mass structures if particles are massless?

• Say we have 4 particles, two of which are massless at tree level, i.e.
m = diag (0, 0,m3,m4)

• Then at 1-loop

mji + δmji ∼


? ?

? δZ, δm,mj,i ̸= 0

! out of the box !


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Massless Particles and Radiative Masses III

How to use the mass structures if particles are massless?

• Say we have 4 particles, two of which are massless at tree level, i.e.
m = diag (0, 0,m3,m4)

• Then at 1-loop

mji + δmji ∼


δm,mj,i = 0 δZ, δm,mi ̸= 0
ΣsL,sR (0)

δZ, δm,mj ̸= 0 δZ, δm,mj,i ̸= 0

! out of the box !


δmL

ji =
1

2

(
miΣ

R
ji(m

2
i ) + ΣsLji (m

2
i ) +mjΣ

L†
ji (m

2
j ) + ΣsR†

ji (m2
j )
)
+
1

2
miδZ

A
Rji −mjδZ

A
Lji
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Massless Particles and Radiative Masses IV

How to use mass structures if particles are massless?
• Say we have 4 particles, two of which are massless at tree level, i.e.
m = diag (0, 0,m3,m4)

• Then at 1-loop

mji + δmji ∼



⇐
δm,mj,i = 0 δZ, δm,mi ̸= 0

ΣsL,sR (0) ⇔��m limit ��mj limit
⇑ ⇐⇑

δZ, δm,mj ̸= 0 δZ, δm,mj,i ̸= 0

��mi limit ! out of the box !



δZALji = −
[
m2
iΣ

L
ji(m

2
i ) +mimjΣ

R
ji(m

2
i )

+mjΣ
sL
ji (m

2
i ) +miΣ

sR
ji (m

2
i ) +H.C.

]
(m2

i−m2
j)
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Massless Particles and Radiative Masses V

How to use mass structures if particles are massless?

• Say we have 4 particles, two of which are massless at tree level, i.e.
m = diag (0, 0,m3,m4)

• Then at 1-loop

mji + δmji ∼


δm,mj,i = 0 . . .
ΣsL,sR (0)

. . . . . .


• Tree level massless particles are indistinguishable — mixing matrix not fully

determined!

• ΣsL,sR (0) can be diagonalized with leftover freedom from the tree-level!

=⇒ Radiative mass! [17]
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Explicit SM up-quark field renormalization

To give an explicit example:
• SM up quark field renormalization is

δZA,uLji = −
VjkV

⋆
ik

2DπD−2v2

[
(md

k)
2 − (mu

i )
2 + ξWm

2
W

]
B0((m

u
i )

2, (md
k)

2, ξWm
2
W )

+
VjkV

⋆
ik

2DπD−2v2

[
(md

k)
2 − (mu

j )
2 + ξWm

2
W

]
B0((m

u
j )

2, (md
k)

2, ξWm
2
W )⋆

δZA,uRji = 0

• No 1
m2

i−m2
j

factors −→ massless and degenerate mass limits!

• Finite and ξ-dependent
• Note complex conjugation on B0!
• Vanishing δZA,uRji is in contrast with the usual approach
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The Need to Renormalize Mixing Matrices? I

Usual approach(es) Proposed scheme
On-shell propagator Overspecified δZ or non-diag. “diag.” in or out

Field ct; hermitian part ξ, ϵUV ξ, ϵUV

diagonal mass ct ϵUV ϵUV

off-diagonal mass ct × ϵUV

Field ct; anti-hermitian part ξ, ϵUV ξ,���XXXϵUV

Wud vertex ϵUV ���XXXϵUV

CKM ct
δV ∼ −δZ̃A,uL V + V δZ̃A,dL δV = 0
−ϵUV and sometimes ξ ���XXXξ, ϵUV

• UV divergences stay in the mass term and do not migrate to other terms

• Usual CKM ct only needed to cancel the migration!
• That initially included ξ-dependent terms...
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The Need to Renormalize Mixing Matrices? II

Is it consistent to not renormalize mixing matrices?

Mixing matrices appear due to diagonalization of mass!

Scenario 1 Scenario 2

– Diagonalize the mass — V 0 – Do not diagonalize — ��ZZV 0

– Renormalize — V 0 → V + δV – Renormalize — ��ZZV 0 means ��HHδV
– Rotate back — V + δV →��@@V + δV ′ – Diagonalize — V +��HHδV

• Both scenarios must be valid, so{
V + δV = V +��HHδV

��@@V + δV ′ = ��ZZV 0 +��HHδV

• ✓ holds if δV = 0 ✓

• × otherwise inconsistent ×
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The Need to Renormalize Mixing Matrices? III

• Mixing matrices are basis artefacts — renormalization is inconsistent!
• Mixing is physical and mass fully accounts for it

• The argument is extremely simple and so is valid
• For fermions and bosons
• And at all orders

• Our scheme gives an explicit example of non-renormalization!
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Conclusions

We defined a new fermion renormalization scheme that
✓ Is universal
✓ Relies on (incoming) no-mixing conditions and mass structures
✓ Does not rely on dropping the absorptive parts
✓ Has ξ–independent mass counterterms
✓ Has finite anti-hermitian part of field counterterms
✓ Can incorporate massless particles and radiative mass generation
✓ Avoids migrating UV divergences and keeps the Lagrangian Hermitian

Finally and perhaps most importantly
✓ There is no need to renormalize mixing matrices!
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