W+charm with massive c quarks in PowHel

Lorant Toth

in collaboration with Giuseppe Bevilacqua, Maria V. Garzelli and Adam Kardos Based on arXiv:2106.11261

2021 October 19th

Contents

- Introduction
- Technicalities
- Effect of spin correlations
- Pheno results at 13 TeV (Comparison to CMS)
- Pheno results at 7 TeV (Comparison to ATLAS)
- Conclusions

- Heavy flavors are important probes for proton structure
- Gluon and sea quark PDF fit input from heavy-meson production
- W + c (W^+ + \overline{c} and W^- + c) is useful for strange quark PDF and sea quark composition
- W + c can be used in two different ways:
 - fragmentation: c quark into D meson
 - c-jet production (c-quark tagging)
- Drell-Yan is also sensitive to strange content
- Status of current fits is not satisfactory for strange content

- We need new DIS capabilities:
 - Large Hadron-Electron Collider (LHeC) [arXiv:1907.01014]
 - Forward Physics Facility at High-Lumi LHC
- For the time being $W + c \; \mbox{data}\; \mbox{can} \; \mbox{be}\; \mbox{used}$
- With $W+c\ care\ must\ be\ taken:$
 - Non-diagonal CKM
 - In higher orders other channels start to contribute

- At NLO we can have, like
 - $\ g \, \underline{g} \to W^+ + \overline{c} + s$
 - $\ u \, \overline{d} \to W^+ + c + \overline{c}$
- $\Rightarrow\,$ Gluon PDF dominates, NLO corrections are important
 - u $\overline{d} \to W^+ + c + \overline{c}$ does not contribute due to analysis cuts
 - Non-diagonal CKM decrease sensitivity to s quarks but important to get agreement with data

- s and \bar{s} distributions are fitted separately
- Due to their sea-quark nature we predict:

$$s(x, Q^2) = \bar{s}(x, Q^2)$$

• This assumption can be tested with the ratio:

$$\mathcal{R} = \frac{\sigma(\mathsf{W}^+ + \bar{\mathsf{c}})}{\sigma(\mathsf{W}^- + \mathsf{c})}$$

- W+c production is also interesting for BSM physics being background

- W + c production was studied at Tevatron by CDF and D0
 - Limited data for $W+j_{c}$
- Also studied at LHC during Run I:
 - ATLAS at 7 TeV
 - CMS at 7, 8 and 13 TeV
 - W + D-meson final states
 - W + j_c final states
 - $-\ W+c$ results in the forward region by LHCb

 $\mathsf{W}+\mathsf{c}$ production was also studied from the theory side:

- First NLO QCD calculation (massive c) by Giele et al. [hep-ph/9511449]
- Available at NLO QCD in MCFM (massive c)
- Can be obtained with MadGraph5_aMC@NLO at NLO QCD with massive c
- More recently first NNLO QCD results ($m_c = 0$) appeared by Czakon et al. [arXiv:2011.01011]

The NNLO calculation of Czakon et al.:

- Five-flavor scheme was used
- \Rightarrow Flavored jet algorithm was needed
- NNLO QCD correction is $\sim 10\%$
- Good agreement with ATLAS data
- Direct comparison on hadron level would be great

- In the five-flavor scheme c is also massless
- ⇒ When produced in pairs the pair can become unresolved
 - The process is $\mathsf{W}+\mathsf{c}+\mathsf{X}$
- $\Rightarrow~$ No subtraction is defined for these regions
- \Rightarrow Have to avoid unregularized singularity
- \Rightarrow In a jet only a single c is allowed

Ē	
E C	
\mathcal{V}	

This work:

- NLO QCD accuracy
 - \Rightarrow Important g g channels of real radiation are considered
- Matched to parton shower and hadronization
 - \Rightarrow Comparison at hadron (particle) level
- Massive charm
 - \Rightarrow No need for flavored jet algorithm
 - \Rightarrow Same jet algorithm can be used as in data taking
 - \Rightarrow PDFs with 3 active flavors
- Same analysis is implemented as used by experiments
 - \Rightarrow No unfolding

Technicalities

- POWHEG matching scheme is used through POWHEG-BOX
- SMEs provided by HELAC (tree and one-loop)
- In-house phase-space generator
- Due to 3 active flavors conversion to the decoupling scheme (if needed)
- Parton shower and hadronization by PYTHIA8
- Two tunes were employed:
 - Monash
 - ATLAS A14
- Different PDFs were used:
 - ABMP16_3_NLO
 - CT18NL0 5 FNS PDFs \Rightarrow conversion to decoupling scheme
 - CT18ZNLO

Effect of Spin Correlations

- Decaying W allowed for investigating several aspects:
 - Full calculation: off-shell W with spin correlation in decay
 - W in NWA
 - No spin correlations in W decay
- Effect of off-shellness is marginal
- Spin correlation in decay is crucial
- ⇒ Effect is carried to rapidity distributions as well

- CMS analyzed $\mathsf{W}^\pm + \mathsf{D}^*(2010)^\mp$ events at 13~TeV (see: <code>arXiv:1811.10021</code>)
- + $|\eta_\ell|$ is measured in W decay
- W tagging through μ detection with missing energy (p_{T,\,\mu}>26 {\rm GeV} , $|\eta_{\mu}|<2.4$)
- μ^+ , μ^- pseudorapidities were registered with their sums as well
- Event classification according to signs of $D^*(2010)$ meson and central μ :
 - $-~{\rm D^*}(2010)^\pm$ with a μ^\pm (Same Signed, SS) \Rightarrow background
 - $\,{\rm D}^*(2010)^\pm$ with a μ^\mp (Opposite Signed, OS) \Rightarrow signal
- CMS compared to theory:
 - Madgraph5_aMC@NLO: W production with light jets at hadron level
 - $-\,$ MCFM: Unfolded to the parton level, using W production with massive c

DEBRECEN

Monash tune, CT18NLO at 90% C.L. UNIVERSITY of DEBRECEN Monash tune, CT18ZNLO at 90% C.L.

- To compare against ABMP16 confidence levels were converted to 68%
- c quark is massive, charm mass from PDF

- Data taken by ATLAS for $W+D\mathrm{-meson}$ and $W+j_c$ (see: arXiv:1402.6263)
- Isolated lepton can be produced with same sign as D-meson or charm in $j_{\rm c}$ jet (SS)
- Isolated lepton can be produced with opposite sign as D-meson or charm in $j_{\rm c}$ jet (OS)
- Interested in opposite sign (OS) events, if multiple charms present incluse cross section is obtained, going through all charms and registering cross section contribution as OS SS
- If a charm-pair is produced cross section contribution will be zero
- c-tagging:
 - c semileptonic decay into muon
 - Presence of charmed meson

Using the ATLAS A14 tune:

Associated charmed jet production with ATLAS A14 tune:

Conclusions

- + First comparison with data at hadron level with NLO QCD accuracy and $m_{c} \neq 0$
- First implementation of NLO+PS matching with the POWHEG method
- Spin correlation and CKM effects are important
- Good agreement with data
- Useful in low p_{T} region where charm mass effects are important
- Can be used in PDF fits

Thank you for your attention!