
fastjet
V E C T O R I Z E D J E T - F I N D I N G I N

P Y T H O N

Aryan Roy

IRIS-HEP Fellow

Manipal Institute of Technology

Jim Pivarski

Mentor

Princeton University

1

Fastjet: A Tool for Jet Finding

• The C++ library is the standard for performing Jet finding in HEP.

• Various interfaces in Python exist, including official bindings provided by the Fastjet

authors.

• The official bindings require loops over Python objects:

>>> data = []

>>> for elem in raw_data:

... data.append(fastjet.PseudoJet(elem[0],elem[1],elem[2],elem[3]))

This is acceptable in C++, however, doing the same thing in Python is a performance bottleneck that needs

to be eliminated.

2

Fastjet: A Tool for Jet Finding

• Some wrappers were made that partly solved the problem, one such example is pyjet.

• It provides event level vectorization, which means all the PseudoJets for an event are cleanly packaged

into a numpy array which enables the user to use vectorization.

• This only solves the problem partially because often in Jet finding, users work with multiple events. If we

want to vectorize multi-event data, we need something that can handle deeply nested, variable length

lists, like Awkward Array!

• Using Awkward Arrays also saves us from frequent conversions between data types to use the modern

Scikit-HEP tools.

3

The New Package

• pyjet is based on a FastJet subset that can give

different answers than the real FastJet.

• The pyjet interface diverges considerably from

the C++ FastJet, which can be a problem.

• Given this, we decided to create fastjet, a new

package that aims to consolidate and address all

the issues in the currently available alternatives.

• fastjet is a new python package that contains the

official bindings along with an Awkward Array

interface.

• This is the first time that the official bindings for

FastJet will be available through pypi.

4

Vectorizing Particle Data Handling

5

The Structure of the interface

• The new package contains

two interfaces within: The

Awkward Array interface

and the Classic interface.

• The Classic interface is

generated when the C++

library is compiled (using

SWIG), which we pass

through as is.

• The Awkward Array

interface is the new

interface that can handle

multi-event data.
Now, you can get all of this through a single pip install!

6

The Classic Interface

>>> import fastjet

>>> data = [

... fastjet.PseudoJet(1.2,3.2,5.4,2.5),

... fastjet.PseudoJet(32.2,64.21,543.34,24.12),

... fastjet.PseudoJet(32.45,64.21,543.14,24.56),

...]

>>> jetdef = fastjet.JetDefinition(fastjet.antikt_algorithm, 0.6)

>>> classic_clusters = fastjet.ClusterSequence(data,jetdef)

It takes a list of PseudoJets,

Which is a Python equivalent

of the C++ Fastjet that

takes a vector of PseudoJets.

>>> output = classic_clusters.inclusive_jets()

>>> for jet in output:

... print(jet.px())

1.2

64.65

Information is returned in the form of list of PseudoJets as well. (Only where the returned

Information has to be a list of particles.)

7

The Single Event Case

>>> import awkward as ak

>>> array = ak.Array(

... [

... {"px": 1.2, "py": 3.2, "pz": 5.4, "E": 2.5, "charge": 1},

... {"px": 32.2, "py": 64.21, "pz": 543.34, "E": 24.12, "charge": -1},

... {"px": 32.45, "py": 63.21, "pz": 543.14, "E": 24.56, "charge": 1},

...],

...)

>>> jetdef = fastjet.JetDefinition(fastjet.antikt_algorithm, 0.6)

>>> vectorized_clusters = fastjet.ClusterSequence(array,jetdef)

The Single event case

takes the input

as a simple Record Array,

with possibly

extra fields.

8

From Object Oriented to Vectorized

9

>>> output = classic_clusters.inclusive_jets()

>>> for jet in output:

... print(jet.px())

1.2

64.65

>>> print(vetorized_clusters.inclusive_jets().px)

[1.2, 64.7]

The Object oriented interface not only requires looping over Python Objects, but also extra lines of code

to properly handle the output.

It’s much cleaner when it’s vectorized!

Extracting information from the Awkward Interface is the same as the classic interface

syntactically. However, the outputs of lists of particles are Awkward Arrays, not list of

PseudoJets.

The Multi Event Case

Using Awkward Array, we can define a multi event case like this:

>>> array = ak.Array(

... [

... [

... {"px": 1.2, "py": 3.2, "pz":5.4, "E": 2.5, "charge": 1},

... {"px": 32.2, "py": 64.21, "pz": 543.34, "E": 24.12, "charge": -1},

... {"px": 32.45, "py": 63.21, "pz": 543.14, "E": 24.56, "charge": 1},

...],

... [], # empty event

... [

... {"px": 2.95, "py": -0.35, "pz": 0.62, "E": 2.86, "charge": 1},

... {"px": 4.33, "py": 0.53, "pz": 1.47, "E": 3.95, "charge": -1},

... {"px": 0.32, "py": 0.06, "pz": 0.12, "E": 0.21, "charge": 1},

... {"px": 0.32, "py": 0.01579, "pz": 0.01, "E": 0.32, "charge": 1},

...],

... [

... {"px": 9.74, "py": -0.01, "pz": 0.23, "E": 9.73, "charge": -1}

...],

...],

...)

10

The Multi Event Case
Now the Awkward Array can be given as argument to the constructor of the ClusterSequence Class, much

like the last two cases:

>>> jetdef = fastjet.JetDefinition(fastjet.antikt_algorithm, 0.6)

>>> multievent_clusters = fastjet.ClusterSequence(array,jetdef)

>>> print(multievent_clusters.inclusive_jets().px)

<Array [[1.2, 64.7], [], [7.94], [9.74]] type='4 * var * float64'>

In this case, the constituents of each inclusive jet also contains the “charge” field that was present in the input.

We can use this to calculate the sum of charges of each inclusive jet!

>>> print(ak.sum(multievent_clusters.constituents().charge, axis = -1))

[[1, 0], [], [2], [-1]]

This is possible because the “constituents”

are just a re-ordering of the original input.

11

Replacing The PseudoJet Class
Since the PseudoJet class has been completely taken out, something needs to take it’s place.

This job is performed by the Vector library in Awkward interface.

>>> import vector

>>> vector.register_awkward()

>>> input_data = ak.Array(

... [[

... {"pt": 1.2, "eta": 3.2, "phi": 2.14, "mass": 0.13957},

... {"pt": 32.2, "eta": -3.1, "phi": 1.67, "mass": 0.13957},

... {"pt": 32.45, "eta": -3.14, "phi": 1.66, "mass": 0.13957},

...],

... [

... {"pt": 1.2, "eta": -4.2, "phi": -2.89, "mass": 0.13957},

... {"pt": 32.2, "eta": -4.21, "phi": -2.891, "mass": 0.13957},

... {"pt": 32.45, "eta": 1.25, "phi": 1.68, "mass": 0.13957},

...]],

... with_name = "Momentum4D", # This line specifies that this is a lorentz vector

...)

All you need to do is register your Awkward Arrays!
12

Replacing The PseudoJet Class

The Awkward Array we just constructed can be input into the ClusterSequence class directly.

>>> cluster = fastjet.ClusterSequence(input_data, jetdef)

>>> cluster.constituents()

<MomentumArray4D [[[{pt: 1.2, ... mass: 0.241}]]] type='2 * var * var * Momentum...'>

The constituents here are also just a reordering of the original input, only this time, the input was

in the pt-eta-phi-mass coordinate system.

Any particle data that is generated by the library will be cartesian, however, registering

the Awkward Arrays allows the user to freely convert between different coordinate systems.

13

The Scikit-HEP Ecosystem

14

There’s already analysis being developed based on fastjet!

Credits: Chad Freer

The Scikit-HEP Ecosystem

15

Credits: Chad Freer

The Scikit-HEP Ecosystem

16

Credits: Chad Freer

The analysis is on github: https://github.com/SUEPPhysics/SUEPCoffea_dask

A 20x decrease

in wall time

taken.

A 25x increase

in throughput.

https://github.com/SUEPPhysics/SUEPCoffea_dask

Conclusion
• You can pip install fastjet now!

• It includes the classic interface, the official Python bindings.

• The vectorized interface overloads the classic interface with event-at-a-time and multievent-at-a-

time functions.

• Uses Awkward Array for arrays and Vector for coordinate systems.

• Allows interoperability with the rest of the Scikit-HEP ecosystem.

• It’s already being used in analysis.

17

