
Graph Methods for 
Particle Tracking

Varun Sreenivasan, University of Wisconsin-Madison

Mentor: Daniel Murnane, Lawrence Berkeley National Laboratory



Particle Track Reconstruction

● In experiments such as ATLAS  and CMS  at the 

High Luminosity Large Hadron Collider (HL-LHC),  

giant particle detectors will collect measurements 

from 200 particle interactions per collision event 

on average.

● Reconstruction of charged particle trajectories in 

high granularity tracking detectors is a critical 

component of the data analysis pipeline in HEP.

● The Exa.Trkx project has been investigating 

machine learning solutions to solve this problem, 

namely Graph Neural Networks. 

Figure: Track Reconstruction



Graph Neural Networks

● Graphs are constructed from the point cloud of hits in 

each event.

● Edges are drawn between hits that may come from the 

same particle according to a heuristic.

● The GNN model is then  trained to classify the graph 

edges as real or fake, giving a pure and efficient sample 

of track segments which can be used to construct full 

track candidates.

Figure: Graph Construction



TrackML CodaLab Dataset

● 9000 Events

● 100,000 hits from around 10,000 particles

● Includes noise

Figure: Simulated HL-LHC collision event



TrackML Pipeline: Processing

● Calculate cell information (ci) features that 

provide useful information about the direction 

of the charged particle.

● Construct truth graphs (true edges connecting 

hits from the same particle) to be used in 

training.  

● Generate events to be used for the embedding 

stage.

Figure: Truth Graph



TrackML Pipeline: Embedding

● Learn a distance metric for hit measurements embedded into 

a new euclidean space where d is low enough that the 

embedded space is not too sparse.  

● Use Nearest-Neighbors algorithm to create predicted graph

● Graphs constructed are then passed to the filtering stage.  



TrackML Pipeline: Embedding

Figure: Embedding



Processing: Cell Information (CI) features

● Cell Count: number of channels in a cluster

● Cell Val: charge deposited

● lx, ly, lz: the vector of charge deposited through the module in local 

coordinates

● leta, lphi: vector in local cylindrical coordinates

● geta, gphi: vector in global cylindrical coordinates 



Processing: Investigating importance of CI

● Understand the importance of the cell 

information features while training an 

embedding model.

● Compare three trained models: one 

without cell information, one with raw cell 

information, and the other with calculated 

cell information.

● Result demonstrated through an 

efficiency-purity graph where both metrics 

vary as radius changes.



Embedding

● Update build_edges function  by integrating FRNN to replace Faiss.

● Determine the appropriate loss function.

● Study the impact of weighting edges.

● Perform Hyperparameter scanning to obtain optimal results

● Train MLP



Build Edges
This function calls the appropriate Nearest Neighbor algorithm to generate edges 
and build the graph. 

Input

1) Query points: the set of hits for which we want to query the database of 
points and generate edges for.

1) Database points: the set of all hits in the event.

1) r_max: the search radius within which we want to generate edges.

1) K_max: the number of neighbors we want to explore in the search radius

Output

1) The graph



Fixed Radius Nearest Neighbors  

● https://github.com/lxxue/FRNN

● A Fixed Radius Nearest Neighbors search implemented on CUDA.

● Provides significant speedup over Facebook’s Faiss and Pytorch3D KNN 
without sacrificing efficiency and purity.

● Integrated into the function build_edges to find the neighbors for query points 
from points in the database. This is integral for performing hard negative mining 
(adding negative samples to the training set) while training. 

● Performed a couple of tweaks to further speedup the algorithm.  Changes 
include not performing KNN and sorting. 

● Benchmarking results show that the updated FRNN is over 10x faster than 
Faiss. 

https://github.com/lxxue/FRNN


Glimpse into the FRNN Algorithm



Benchmarking Sample (Time vs D)

N = 100000

K = 1500

r = 1.0



Determining Max K for FRNN

● Get an accurate estimate of the number of neighbors to explore in the specified 

radius. 

● We want this value because this is a required input for the FRNN algorithm.

● To achieve high efficiency, it is important to have a Max-K value that is greater 

than or equal to the number of neighbors for a point in the densest region. 

● Can’t arbitrarily set to a high value due to memory constraints.

● Explored KD-Tree and DBSCAN algorithms to do this. Finally, settled on using the 

FRNN grid to determine the Max-K value. 



KD-Tree

Figure: KD-Tree



DBSCAN

Figure: DBSCAN



FRNN Grid Solution

● Use Grid Count to determine the densest cell. 

● Identify points belonging to the densest cell.

● Run nearest neighbors algorithm on each of the points in this cell.

● The Max-K value is the maximum number of edges generated for a specific 

point



Determining the appropriate loss function

● For positive examples (true edges), we want to ensure to minimum distance 

between embedded hits. So penalization increases as distance between these hits 

increases.

● For negative examples (false edges), we want to maximize the distance between 

embedded hits. So penalization increases as distance between these hits decreases.

● We explore two loss functions: Binary Cross Entropy loss and Hinge Embedding 

loss. 



Determining the appropriate loss function

Hinge Embedding Loss: 



Determining the appropriate loss function 

Binary Cross Entropy Loss



Result

● The best loss function was the 

Hinge Embedding Loss without 

application of square root. 

Figure: Loss Function Evaluation



Weighting

● The weighting functionality present in the 

embedding procedure is used to prioritize 

more important tracks.

● For the evaluation, the vanilla efficiency and 

purity metrics are replaced with weighted 

efficiency and purity.  

● High weight tracks include more hits and are 

longer than low weight tracks.

Red: High Weight, Blue: Low Weights



Weighted Efficiency and Purity

Weighted Efficiency =  sum (y * pred_weights) / sum (true_weights)

Weighted Purity = sum (y * pred_weights) / sum  (pred_weights)

true_weights  = ½ * (Si + Sj)                                                           Sk: Spacepoint k weight

pred_weights = ½ * (Si + Sj), if yij = 1                         

= 1  if yij = 0



Weighted Model vs Unweighted Model

● Comparison of models trained with 

weighting and without weighting.

● Analysis over weighted efficiency

and Weighted purity. 

● Model trained with weighting 

performs better across the board. 



Hyperparameter Scanning

● Study the impact of varying parameters such as number 

of hidden layers, number of hidden nodes, etc. 

● Integrated TrainTrack library to iterate over multiple 

hyperparameters and generate models in a serial and 

trackable way. 

● Doing this helps us obtain the optimal hyperparameters 

to create the best model possible.

● TrainTrack: https://github.com/murnanedaniel/train-

track

Figure: Scan Plot

https://github.com/murnanedaniel/train-track


MLP Architecture 

● Input Channels: 12

● Hidden Layers: 6

● Hidden Nodes: 1024 

● Embedding Dimension: 8

● Activation Function: Tanh - applied after every linear transformation


