Graph Methods for
Particle Tracking

Varun Sreenivasan, University of Wisconsin-Madison

Mentor: Daniel Murnane, Lawrence Berkeley National Laboratory

Particle Track Reconstruction

e Inexperimentssuch as ATLAS and CMS at the
High Luminosity Large Hadron Collider (HL-LHC),
giant particle detectors will collect measurements
from 200 particle interactions per collision event
on average.

e Reconstruction of charged particle trajectories in
high granularity tracking detectors is a critical
component of the data analysis pipeline in HEP.

e TheExa.Trkx project has been investigating
machine learning solutions to solve this problem,
namely Graph Neural Networks.

Figure: Track Reconstruction

Graph Neural Networks

Graphs are constructed from the point cloud of hits in
each event.

Edges are drawn between hits that may come from the
same particle according to a heuristic.

The GNN model is then trained to classify the graph
edges as real or fake, giving a pure and efficient sample
of track segments which can be used to construct full
track candidates.

-1000 -800 -600 -400 -200
x

Figure: Graph Construction

200

v
400

TrackML Codalab Dataset

e 9000 Events

e 100,000 hits from around 10,000 particles

e Includes noise

Figure: Simulated HL-LHC collision event

TrackML Pipeline: Processing

Calculate cell information (ci) features that
provide useful information about the direction
of the charged particle.

Construct truth graphs (true edges connecting
hits from the same particle) to be used in
training.

Generate events to be used for the embedding
stage.

Figure: Truth Graph

TrackML Pipeline: Embedding

e Learnadistance metric for hit measurements embedded into
anew euclidean space where d is low enough that the
embedded space is not too sparse.

e Use Nearest-Neighbors algorithm to create predicted graph

e Graphs constructed are then passed to the filtering stage.

TrackML Pipeline: Embedding

Figure: Embedding

Processing: Cell Information (Cl) features

e Cell Count: number of channels in a cluster
e Cell Val: charge deposited

e Ix,ly,|z:the vector of charge deposited through the module in local
coordinates

e leta, Iphi: vector in local cylindrical coordinates

e geta, gphi: vector in global cylindrical coordinates

Understand the importance of the cell
information features while training an
embedding model.

Compare three trained models: one
without cell information, one with raw cell
information, and the other with calculated
cell information.

Result demonstrated through an
efficiency-purity graph where both metrics
vary as radius changes.

Processing: Investigating importance of Cl

—— Without Cell Information
= With raw Cell Information features
—— With calculated Cell Information features

040 043 046 049 052 055 058 061 064 067 070 073 0.76 0.79 082 085 088 091 094 097
Efficiency

Embedding

e Update build_edges function by integrating FRNN to replace Faiss.

e Determine the appropriate loss function.

e Study the impact of weighting edges.

e Perform Hyperparameter scanning to obtain optimal results

e Train MLP

Build Edges

This function calls the appropriate Nearest Neighbor algorithm to generate edges
and build the graph.

Input
1) Query points: the set of hits for which we want to query the database of
points and generate edges for.
1) Database points: the set of all hits in the event.
1) r_max:the search radius within which we want to generate edges.
1) K_max: the number of neighbors we want to explore in the search radius

Output
1) Thegraph

Fixed Radius Nearest Neighbors

e https://qgithub.com/Ixxue/FRNN

e AFixed Radius Nearest Neighbors search implemented on CUDA.

e Provides significant speedup over Facebook’s Faiss and Pytorch3D KNN
without sacrificing efficiency and purity.

e Integrated into the function build_edges to find the neighbors for query points
from points in the database. This is integral for performing hard negative mining
(adding negative samples to the training set) while training.

e Performed a couple of tweaks to further speedup the algorithm. Changes
include not performing KNN and sorting.

e Benchmarking results show that the updated FRNN is over 10x faster than
Faiss.

https://github.com/lxxue/FRNN

Glimpse into the FRNN Algorithm

N\

Overall Strategy

e Spatial Partitioning:
v @ . :
/4 \ 1. Partition space equally into bins

’ ’ . l“
@ '/ \l 2. Insert each particle into bins
| @ R)

: 3. Only need to search particles
© A @ /| found in neighboring bins

O(Nk)

Benchmarking Sample (Time vs D)

N = 100000
K=1500
r=1.0

frnn without cached grid
frnn with cached grid
faiss

pytorch3d

W

10.0 12.5 15.0 17.5 20.0
Dimension

u
=
v
E
[
o
o
)

Determining Max K for FRNN

e Get an accurate estimate of the number of neighbors to explore in the specified
radius.

e We want this value because this is a required input for the FRNN algorithm.

e Toachieve high efficiency, it is important to have a Max-K value that is greater
than or equal to the number of neighbors for a point in the densest region.

e Can’t arbitrarily set to a high value due to memory constraints.

e Explored KD-Tree and DBSCAN algorithms to do this. Finally, settled on using the
FRNN grid to determine the Max-K value.

Figure: KD-Tree

DBSCAN

Molecular localizations

@

Cluster 1 Cluster 2

Figure: DBSCAN

FRNN Grid Solution

Use Grid Count to determine the densest cell.

e Identify points belonging to the densest cell.

e Runnearest neighbors algorithm on each of the points in this cell.

e The Max-K value is the maximum number of edges generated for a specific
point

Determining the appropriate loss function

e For positive examples (true edges), we want to ensure to minimum distance
between embedded hits. So penalization increases as distance between these hits

increases.

e For negative examples (false edges), we want to maximize the distance between
embedded hits. So penalization increases as distance between these hits decreases.

e We explore two loss functions: Binary Cross Entropy loss and Hinge Embedding
loss.

Determining the appropriate loss function

Hinge Embedding Loss:

Measures the loss given an input tensor & and a labels tensor 3 (containing 1 or -1). This is usually used for measuring
whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as &, and is typically used for learning

nonlinear embeddings or semi-supervised learning.

The loss function for 71-th sample in the mini-batch is

; T, ify, = 1,
o max{0,A — z,}, ify, = —1,

and the total loss functions is

Imea.n(b), if reduction = ‘mean’;

‘{?(1:.‘ y] -

Isum(L), ifreduction = ‘sum’.

where L = {l;,...,Ixn}’

Determining the appropriate loss function

Binary Cross Entropy Loss

Creates a criterion that measures the Binary Cross Entropy between the target and the output:

The unreduced (i.e. with reduction setto 'none') loss can be described as:

Uz, y)=L= {l],...,l:\r}v. l, = —wy [Yn - logz, + (1 — y,) - log(1l — z,)],

where IV is the batch size. If reduction is not 'none' (default 'mean'),then

mean(L), if reduction = ‘mean’;

sum(L), if reduction = ‘sum’.

This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets ¥ should

be numbers between 0 and 1.

Result

~— Cross Entropy
- Hinge Embedding

e The bestloss function was the
Hinge Embedding Loss without

application of square root.

050 053 056 059 062 065 068 071 074 077 080 083 086 089 092 095 098
Efficiency

Figure: Loss Function Evaluation

Weighting

Red: High Weight, Blue: Low Weights

e The weighting functionality present in the
embedding procedure is used to prioritize
more important tracks.

e Fortheevaluation, the vanilla efficiency and
purity metrics are replaced with weighted
efficiency and purity.

e High weight tracks include more hits and are
longer than low weight tracks.

Weighted Efficiency and Purity

Weighted Efficiency = sum (y * pred_weights) / sum (true_weights)

Weighted Purity = sum (y * pred_weights) / sum (pred_weights)

true_weights =% * (Si+Sj) Sk: Spacepoint k weight
pred_weights =%* (Si+S)), if yij = 1
=1 ifyij=0

Weighted Model vs Unweighted Model

e Comparison of models trained with

weighting and without weighting.

e Analysis over weighted efficiency

and Weighted purity.

e Model trained with weighting

performs better across the board.

0.00 0.05 0.10 0.15 020 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 095
Efficiency

Study the impact of varying parameters such as number
of hidden layers, number of hidden nodes, etc.

Integrated TrainTrack library to iterate over multiple
hyperparameters and generate models in a serial and
trackable way.

Doing this helps us obtain the optimal hyperparameters
to create the best model possible.

TrainTrack: https://github.com/murnanedaniel/train-
track

Hyperparameter Scanning

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Efficiency

Figure: Scan Plot

https://github.com/murnanedaniel/train-track

MLP Architecture

e Input Channels: 12

e Hidden Layers: 6

e Hidden Nodes: 1024

e Embedding Dimension: 8

e Activation Function: Tanh - applied after every linear transformation

