Machine-Learned Particle Flow
Performance update & exploration of explainable AI techniques

IRIS-HEP
2021/9/20

Farouk Mokhtar, UCSD, Duarte Lab
Mentor: Javier Duarte
Additional mentors: Joosep Pata, Jean-Roch Vlimant, Raghav Kansal
Overview

- **PF**: Global event reconstruction; combining information from calorimeter clusters and tracks to reconstruct stable particles
- **MLPF**: an evolution of the rule-based PF algorithm for heterogeneous computing platforms such as GPUs using **supervised machine learning with graph neural networks**
- **Our input is PF-Elements**: calorimeter clusters and tracks

Aim to speed up the parts of PF reconstruction that have not already been ported to GPU!
ML model on the Delphes benchmark dataset

Input:
- Each event is represented by a graph (~5k nodes for ttbar+PU50)
- Each node in the graph is a detector element (12d-feature vector):

 # cluster: [type==1, Et [GeV], η, φ, E [GeV], Eem [GeV], Ehad [GeV], 0, 0, 0, 0]

 # track: [type==2, pt [GeV], η, φ, P [GeV], ηouter, φouter, charge, is_gen_muon, is_gen_electron]

Output:
- Multi output: pid (6d-one hot encoding) & p4 (6d-vector):

 # pid: [pid]

 # p4: [charge, pt [GeV], eta, sin phi, cos phi, E [GeV]]

<table>
<thead>
<tr>
<th>ID</th>
<th>PF candidate type</th>
<th>Fraction per event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no reconstructed PFCandidate</td>
<td>3%</td>
</tr>
<tr>
<td>1</td>
<td>charged hadrons</td>
<td>52%</td>
</tr>
<tr>
<td>2</td>
<td>neutral hadrons</td>
<td>18%</td>
</tr>
<tr>
<td>3</td>
<td>photons</td>
<td>26%</td>
</tr>
<tr>
<td>4</td>
<td>electrons</td>
<td>0.2%</td>
</tr>
<tr>
<td>5</td>
<td>muons</td>
<td>0.07%</td>
</tr>
</tbody>
</table>

Visualizing the architecture:

Event as input set
\[X = \{ x_i \} \]

Event as graph
\[X = \{ x_i \}, A = A_{ij} \]

Transformed inputs
\[H = \{ h_i \} \]

"Gravnet"

Graph building

Message passing

Target set \(Y = y_i \)

Output set \(Y' = \{ y'_i \} \)

Elementwise loss \(L(y_i, y'_i) \)
classification & regression

Decoding

Link to paper: https://arxiv.org/abs/2101.08578

Link to dataset: https://zenodo.org/record/4452283#.YA_SsGQzY-R

Link to code: https://github.com/jpata/particleflow
Project goals

- Develop a different training setup for MLPF using pytorch
- Implement an explainable AI technique called Layerwise Relevance Propagation (LRP) on MLPF

Other recent developments and research directions:
- CMSSW integration
- Transfer learning on a particle gun sample
- Quantization
- Hyperparameter optimization
Performance
Results for the full training
(reproduces the results of the MLPF paper using a different training setup)

Conclusion: comparable performance to the rule-based algorithm
Interpretability
Interpretability

- **Layerwise Relevance Propagation (LRP)** [1]
- **LRP**: provides a systematic way of computing **relevance score** for each neuron
- Allows us to answer: “which detector elements were the most relevant when making inference?”

⇒ we draw **relevance score matrices (relevancy-map)**: heatmaps of relevance scores for each classified PID (and each regressed variable) that shows the relevant parts of the graph for this prediction

\[
R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_{i'} z_{i'j}} R_j^{(l+1)}
\]

with
\[
z_{ij} = x_i^{(l)} w_{ij}^{(l,l+1)}
\]

[1] https://doi.org/10.1007/978-3-030-28954-6_10
This is a heatmap plotted for one PF-candidate (in this case a charged hadron prediction).

- The **rows** correspond to the (relevant) **neighbours** of the charged hadron ordered by distance.
- The **columns** correspond to the 12-d feature vectors.
- **Z-scale** (color) is the **relevance score** and brighter means more relevant.

Takeaway from sample 1:
- The “pt” feature is the most relevant feature.
- Neighbors were not really relevant for prediction.
Relevancy-map: sample 2

- This is a heatmap plotted for one PF-candidate (in this case a charged hadron prediction)
- The rows correspond to the (relevant) neighbours of the charged hadron ordered by distance
- The columns correspond to the 12-d feature vectors
- Z-scale (color) is the relevance score and brighter means more relevant

Takeaway from sample 2:
- Neighbor #2 was relevant for prediction
Processing relevancy-maps

- **Recall**: we have one relevancy map per output neuron
- 12 output neurons * 5k nodes/per event * 5k QCD events → **300k relevancy-maps**
- To process this huge amount of relevancy-maps we:
 1. **Average over relevancy-maps** after ordering neighbours by relevance
 2. **Make histogram plots**
Averaging over relevancy-maps

- Correctly classified electrons have high relevance score on `is_gen_el` feature
- This is one way to verify the LRP methodology
Histogram plots

- *eta_outer* is irrelevant when it comes to classifying *nhadrons*
Summary and Outlook

- We developed an alternative baseline MLPF model using pytorch
- We explored the application of an explainable AI technique on MLPF

Further steps:
- Model optimization:
 - Time complexity (explore different graph building techniques)
 - Bfloat or 8-bit quantization
- Use LRP to understand the model’s decision making
- Deployment on new hardware platforms (FPGAs/GPUs/Voyager)
- Application to real CMS/other collider data
Backup
Current pytorch architecture:

This skip connection in the last DNN (which feeds the input features again) is crucial for the regression part to give good results.
Results for the full dataset training:
Results for the full dataset training:

- **Interesting to note**: classification converges quickly (more so for the common classes), the regression of the least represented classes gets better with more training.