

Machine-Learned Particle Flow

Performance update & exploration of explainable AI techniques

IRIS-HEP

2021/9/20

Farouk Mokhtar, UCSD, Duarte Lab

Mentor: Javier Duarte

Additional mentors: Joosep Pata, Jean-Roch Vlimant, Raghav Kansal

Overview

- **PF**: Global event reconstruction; combining information from calorimeter clusters and tracks to reconstruct stable particles
- MLPF: an evolution of the rule-based PF algorithm for heterogeneous computing platforms such as GPUs using supervised machine learning with graph neural networks
- Our input is PF-Elements: calorimeter clusters and tracks

Aim to speed up the parts of PF reconstruction that have not already been ported to GPU!

Event as input $X = \{x_i\}$

ML model on the Delphes benchmark dataset

Input:

- Each event is represented by a graph (~5k nodes for ttbar+PU50)
- Each **node** in the graph is a **detector element** (12d-feature vector):

```
# cluster: [type==1, Et [GeV], \eta, \varphi, E [GeV], Eem [GeV], Ehad [GeV], 0, 0, 0, 0] # track: [type==2, pt [GeV], \eta, \varphi, P [GeV], \eta_{outer}, \varphi_{outer}, charge, is_gen_muon, is gen electron]
```

Output:

• Multi output: **pid** (6d-one hot encoding) & **p4** (6d-vector):

```
# pid: [pid]
```

p4: [charge, pt [GeV], eta, sin phi, cos phi, E [GeV]]

ID	PF candidate type	Fraction per event
0	no reconstructed PFCandidate	3%
1	charged hadrons	52%
2	neutral hadrons	18%
3	photons	26%
4	electrons	0.2%
5	muons	0.07%

Visualizing the architecture:

Link to paper: https://arxiv.org/abs/2101.08578

Link to dataset: https://zenodo.org/record/4452283#.YA_SsGQzY-R

Project goals

- Develop a different training setup for MLPF using pytorch
- Implement an explainable AI technique called Layerwise Relevance Propagation (LRP) on MLPF

Other recent developments and research directions:

- CMSSW integration
- Transfer learning on a particle gun sample
- Quantization
- Hyperparameter optimization

<u>Performance</u>

Results for the full training

(reproduces the results of the MLPF paper using a different training setup)

Conclusion: comparable performance to the rule-based algorithm

Interpretability

Interpretability

- Layerwise Relevance Propagation (LRP) [1]
- LRP: provides a systematic way of computing relevance score for each neuron
- Allows us to answer: "which detector elements were the most relevant when making inference?"

⇒ we draw **relevance score matrices (relevancy-map):** heatmaps of relevance scores for each classified PID (and each regressed variable) that shows the relevant parts of the graph for this prediction

$$R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_{i'} z_{i'j}} R_j^{(l+1)}$$
 with $z_{ij} = x_i^{(l)} w_{ij}^{(l,l+1)}$

Relevancy-map: sample 1

- This is a heatmap plotted for **one PF-candidate** (in this case a **charged hadron** prediction)
- The **rows** correspond to the (relevant) **neighbours** of the charged hadron ordered by distance
- The **columns** correspond to the **12-d feature vectors**
- **Z-scale** (color) is the **relevance score** and brighter means more relevant

Relevancy-map: sample 2

- This is a heatmap plotted for **one PF-candidate** (in this case a **charged hadron** prediction)
- The **rows** correspond to the (relevant) **neighbours** of the charged hadron ordered by distance
- The **columns** correspond to the **12-d feature vectors**
- **Z-scale** (color) is the **relevance score** and brighter means more relevant

Takeaway from sample 2:

Neighbor # 2 was relevant for prediction

Processing relevancy-maps

- Recall: we have one relevancy map per output neuron
- 12 output neurons * 5k nodes/per event * 5k QCD events → **300k relevancy-maps**
- To process this huge amount of relevancy-maps we:
- (1) **Average over relevancy-maps** after ordering neighbours by relevance
- (2) Make histogram plots

Averaging over relevancy-maps

- Correctly classified electrons have high relevance score on is_gen_el feature
- This is one way to verify the LRP methodology

Histogram plots

eta_outer is irrelevant when it comes to classifying nhadrons

Summary and Outlook

- We developed an alternative baseline MLPF model using pytorch
- We explored the application of an explainable AI technique on MLPF

Further steps:

- Model optimization:
 - Time complexity (explore different graph building techniques)
 - Bfloat or 8-bit quantization
- Use LRP to understand the model's decision making
- Deployment on new hardware platforms (FPGAs/GPUs/Voyager)
- Application to real CMS/other collider data

Backup

Current pytorch architecture:

This skip connection in the last DNN (which feeds the input features again) is crucial for the regression part to give good results

```
self.nn1 = nn.Sequential(
    nn.Linear(input_dim=12, 64),
   self.elu(),
   nn.Linear(64, 64),
   self.elu(),
   nn.Linear(64, 12),
self.conv1 = GravNetConv(12, 64, space_dim=4, propagate_dimensions=22, k_nearest=16)
self.nn2 = nn.Sequential(
   nn.Linear(64, 256),
   self.elu(),
   nn.Linear(256, 256),
   self.elu(),
   nn.Linear(256, 256),
   self.elu(),
   nn.Linear(256, output_dim_id=6),
self.nn3 = nn.Sequential(
    nn.Linear(output_dim_id + input_dim + 64, 256),
    self.elu(),
   nn.Linear(256, 256),
   self.elu(),
   nn.Linear(256, 256),
   self.elu(),
   nn.Linear(256, output_dim_p4=6),
```

Results for the full dataset training:

Results for the full dataset training:

• Interesting to note: classification converges quickly (more so for the common classes), the regression of the least represented classes gets better with more training

sin phi

